Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
44
result(s) for
"Cader, M Zameel"
Sort by:
Mitophagy inhibits amyloid-β and tau pathology and reverses cognitive deficits in models of Alzheimer’s disease
by
Akbari Mansour
,
Mattson, Mark P
,
Zameel, Cader M
in
Aging
,
Alzheimer's disease
,
Animal models
2019
Accumulation of damaged mitochondria is a hallmark of aging and age-related neurodegeneration, including Alzheimer’s disease (AD). The molecular mechanisms of impaired mitochondrial homeostasis in AD are being investigated. Here we provide evidence that mitophagy is impaired in the hippocampus of AD patients, in induced pluripotent stem cell-derived human AD neurons, and in animal AD models. In both amyloid-β (Aβ) and tau Caenorhabditis elegans models of AD, mitophagy stimulation (through NAD+ supplementation, urolithin A, and actinonin) reverses memory impairment through PINK-1 (PTEN-induced kinase-1)-, PDR-1 (Parkinson’s disease-related-1; parkin)-, or DCT-1 (DAF-16/FOXO-controlled germline-tumor affecting-1)-dependent pathways. Mitophagy diminishes insoluble Aβ1–42 and Aβ1–40 and prevents cognitive impairment in an APP/PS1 mouse model through microglial phagocytosis of extracellular Aβ plaques and suppression of neuroinflammation. Mitophagy enhancement abolishes AD-related tau hyperphosphorylation in human neuronal cells and reverses memory impairment in transgenic tau nematodes and mice. Our findings suggest that impaired removal of defective mitochondria is a pivotal event in AD pathogenesis and that mitophagy represents a potential therapeutic intervention.The authors report that mitophagy is impaired in Alzheimer’s disease. Stimulation of mitophagy reverses cognitive deficits in nematode and mouse models of Alzheimer’s disease, suggesting a potential therapeutic intervention.
Journal Article
TRESK is a key regulator of nocturnal suprachiasmatic nucleus dynamics and light adaptive responses
2020
The suprachiasmatic nucleus (SCN) is a complex structure dependent upon multiple mechanisms to ensure rhythmic electrical activity that varies between day and night, to determine circadian adaptation and behaviours. SCN neurons are exposed to glutamate from multiple sources including from the retino-hypothalamic tract and from astrocytes. However, the mechanism preventing inappropriate post-synaptic glutamatergic effects is unexplored and unknown. Unexpectedly we discovered that TRESK, a calcium regulated two-pore potassium channel, plays a crucial role in this system. We propose that glutamate activates TRESK through NMDA and AMPA mediated calcium influx and calcineurin activation to then oppose further membrane depolarisation and rising intracellular calcium. Hence, in the absence of TRESK, glutamatergic activity is unregulated leading to membrane depolarisation, increased nocturnal SCN firing, inverted basal calcium levels and impaired sensitivity in light induced phase delays. Our data reveals TRESK plays an essential part in SCN regulatory mechanisms and light induced adaptive behaviours.
The suprachiasmatic nucleus (SCN) ensures rhythmic electrical activity that varies between day and night to determine circadian behaviours. The authors show that TRESK channels provide a feedback mechanism to maintain the SCN in the appropriate state for nocturnal light-induced behavioural changes.
Journal Article
Neuropilins lock secreted semaphorins onto plexins in a ternary signaling complex
2012
Semaphorin-plexin cell-cell signaling is important in tissue development, with roles in axon guidance, immunity and cancer. The structure of the complex formed between semaphorin-3, plexin-A and their co-receptor neuropilin, combined with mutagenesis, reveals how neuropilin contributes to stabilizing the signaling complex.
Co-receptors add complexity to cell-cell signaling systems. The secreted semaphorin 3s (Sema3s) require a co-receptor, neuropilin (Nrp), to signal through plexin As (PlxnAs) in functions ranging from axon guidance to bone homeostasis, but the role of the co-receptor is obscure. Here we present the low-resolution crystal structure of a mouse semaphorin–plexin–Nrp complex alongside unliganded component structures. Dimeric semaphorin, two copies of plexin and two copies of Nrp are arranged as a dimer of heterotrimers. In each heterotrimer subcomplex, semaphorin contacts plexin, similar to in co-receptor–independent signaling complexes. The Nrp1s cross brace the assembly, bridging between sema domains of the Sema3A and PlxnA2 subunits from the two heterotrimers. Biophysical and cellular analyses confirm that this Nrp binding mode stabilizes a canonical, but weakened, Sema3–PlxnA interaction, adding co-receptor control over the mechanism by which receptor dimerization and/or oligomerization triggers signaling.
Journal Article
Patient fibroblast circadian rhythms predict lithium sensitivity in bipolar disorder
by
Zameel, Cader M
,
Harrison, Paul J
,
Peirson, Stuart N
in
Bipolar disorder
,
Cell lines
,
Circadian rhythm
2021
Bipolar disorder is a chronic neuropsychiatric condition associated with mood instability, where patients present significant sleep and circadian rhythm abnormalities. Currently, the pathophysiology of bipolar disorder remains elusive, but treatment with lithium continues as the benchmark pharmacotherapy, functioning as a potent mood stabilizer in most, but not all patients. Lithium is well documented to induce period lengthening and amplitude enhancement of the circadian clock. Based on this, we sought to investigate whether lithium differentially impacts circadian rhythms in bipolar patient cell lines and crucially if lithium’s effect on the clock is fundamental to its mood-stabilizing effects. We analyzed the circadian rhythms of bipolar patient-derived fibroblasts (n = 39) and their responses to lithium and three further chronomodulators. Here we show, relative to controls (n = 23), patients exhibited a wider distribution of circadian period (p < 0.05), and that patients with longer periods were medicated with a wider range of drugs, suggesting lower effectiveness of lithium. In agreement, patient fibroblasts with longer periods displayed muted circadian responses to lithium as well as to other chronomodulators that phenocopy lithium. These results show that lithium differentially impacts the circadian system in a patient-specific manner and its effect is dependent on the patient’s circadian phenotype. We also found that lithium-induced behavioral changes in mice were phenocopied by modulation of the circadian system with drugs that target the clock, and that a dysfunctional clock ablates this response. Thus, chronomodulatory compounds offer a promising route to a novel treatment paradigm. These findings, upon larger-scale validation, could facilitate the implementation of a personalized approach for mood stabilization.
Journal Article
Lipopolysaccharide distinctively alters human microglia transcriptomes to resemble microglia from Alzheimer's disease mouse models
by
Burlacu, Elena
,
Davis, John
,
Cader, M. Zameel
in
Alzheimer Disease - metabolism
,
alzheimer's disease
,
Animals
2022
Alzheimer's disease (AD) is the most common form of dementia, and risk-influencing genetics implicates microglia and neuroimmunity in the pathogenesis of AD. Induced pluripotent stem cell (iPSC)-derived microglia (iPSC-microglia) are increasingly used as a model of AD, but the relevance of historical immune stimuli to model AD is unclear. We performed a detailed cross-comparison over time on the effects of combinatory stimulation of iPSC-microglia, and in particular their relevance to AD. We used single-cell RNA sequencing to measure the transcriptional response of iPSC-microglia after 24 h and 48 h of stimulation with prostaglandin E2 (PGE2) or lipopolysaccharide (LPS)+interferon gamma (IFN-γ), either alone or in combination with ATPγS. We observed a shared core transcriptional response of iPSC-microglia to ATPγS and to LPS+IFN-γ, suggestive of a convergent mechanism of action. Across all conditions, we observed a significant overlap, although directional inconsistency to genes that change their expression levels in human microglia from AD patients. Using a data-led approach, we identify a common axis of transcriptomic change across AD genetic mouse models of microglia and show that only LPS provokes a transcriptional response along this axis in mouse microglia and LPS+IFN-γ in human iPSC-microglia. This article has an associated First Person interview with the first author of the paper.
Journal Article
Comprehensive characterization of the neurogenic and neuroprotective action of a novel TrkB agonist using mouse and human stem cell models of Alzheimer’s disease
by
Calogeropoulou, Theodora
,
Lavigne, Matthieu D.
,
Athanasiou, Christina
in
Advertising executives
,
Alzheimer Disease - drug therapy
,
Alzheimer Disease - metabolism
2024
Background
Neural stem cell (NSC) proliferation and differentiation in the mammalian brain decreases to minimal levels postnatally. Nevertheless, neurogenic niches persist in the adult cortex and hippocampus in rodents, primates and humans, with adult NSC differentiation sharing key regulatory mechanisms with development. Adult neurogenesis impairments have been linked to Alzheimer’s disease (AD) pathology. Addressing these impairments by using neurotrophic factors is a promising new avenue for therapeutic intervention based on neurogenesis. However, this possibility has been hindered by technical difficulties of using in-vivo models to conduct screens, including working with scarce NSCs in the adult brain and differences between human and mouse models or ethical limitations.
Methods
Here, we use a combination of mouse and human stem cell models for comprehensive in-vitro characterization of a novel neurogenic compound, focusing on the brain-derived neurotrophic factor (BDNF) pathway. The ability of ENT-A011, a steroidal dehydroepiandrosterone derivative, to activate the tyrosine receptor kinase B (TrkB) receptor was tested through western blotting in NIH-3T3 cells and its neurogenic and neuroprotective action were assessed through proliferation, cell death and Amyloid-β (Aβ) toxicity assays in mouse primary adult hippocampal NSCs, mouse embryonic cortical NSCs and neural progenitor cells (NPCs) differentiated from three human induced pluripotent stem cell lines from healthy and AD donors. RNA-seq profiling was used to assess if the compound acts through the same gene network as BDNF in human NPCs.
Results
ENT-A011 was able to increase proliferation of mouse primary adult hippocampal NSCs and embryonic cortical NSCs, in the absence of EGF/FGF, while reducing Aβ-induced cell death, acting selectively through TrkB activation. The compound was able to increase astrocytic gene markers involved in NSC maintenance, protect hippocampal neurons from Αβ toxicity and prevent synapse loss after Aβ treatment. ENT-A011 successfully induces proliferation and prevents cell death after Aβ toxicity in human NPCs, acting through a core gene network shared with BDNF as shown through RNA-seq.
Conclusions
Our work characterizes a novel BDNF mimetic with preferable pharmacological properties and neurogenic and neuroprotective actions in Alzheimer’s disease via stem cell-based screening, demonstrating the promise of stem cell systems for short-listing competitive candidates for further testing.
Journal Article
From Young to Old: Mimicking Neuronal Aging in Directly Converted Neurons from Young Donors
by
Cader, M. Zameel
,
Varghese, Nimmy
,
Grimm, Amandine
in
Adenosine Triphosphate - metabolism
,
Aging
,
Cellular Senescence - drug effects
2024
A substantial challenge in human brain aging is to find a suitable model to mimic neuronal aging in vitro as accurately as possible. Using directly converted neurons (iNs) from human fibroblasts is considered a promising tool in human aging since it retains the aging-associated mitochondrial donor signature. Still, using iNs from aged donors can pose certain restrictions due to their lower reprogramming and conversion efficacy than those from younger individuals. To overcome these limitations, our study aimed to establish an in vitro neuronal aging model mirroring features of in vivo aging by acute exposure on young iNs to either human stress hormone cortisol or the mitochondrial stressor rotenone, considering stress as a trigger of in vivo aging. The impact of rotenone was evident in mitochondrial bioenergetic properties by showing aging-associated deficits in mitochondrial respiration, cellular ATP, and MMP and a rise in glycolysis, mitochondrial superoxide, and mitochondrial ROS; meanwhile, cortisol only partially induced an aging-associated mitochondrial dysfunction. To replicate the in vivo aging-associated mitochondrial dysfunctions, using rotenone, a mitochondrial complex I inhibitor, proved to be superior to the cortisol model. This work is the first to use stress on young iNs to recreate aging-related mitochondrial impairments.
Journal Article
EBNA2 Binds to Genomic Intervals Associated with Multiple Sclerosis and Overlaps with Vitamin D Receptor Occupancy
by
Cader, M. Zameel
,
Ricigliano, Vito A. G.
,
Mechelli, Rosella
in
Analysis
,
Autoimmune diseases
,
Binding sites
2015
Epstein-Barr virus (EBV) is a non-heritable factor that associates with multiple sclerosis (MS). However its causal relationship with the disease is still unclear. The virus establishes a complex co-existence with the host that includes regulatory influences on gene expression. Hence, if EBV contributes to the pathogenesis of MS it may do so by interacting with disease predisposing genes. To verify this hypothesis we evaluated EBV nuclear antigen 2 (EBNA2, a protein that recent works by our and other groups have implicated in disease development) binding inside MS associated genomic intervals. We found that EBNA2 binding occurs within MS susceptibility sites more than expected by chance (factor of observed vs expected overlap [O/E] = 5.392-fold, p < 2.0e-05). This remains significant after controlling for multiple genomic confounders. We then asked whether this observation is significant per se or should also be viewed in the context of other disease relevant gene-environment interactions, such as those attributable to vitamin D. We therefore verified the overlap between EBNA2 genomic occupancy and vitamin D receptor (VDR) binding sites. EBNA2 shows a striking overlap with VDR binding sites (O/E = 96.16-fold, p < 2.0e-05), even after controlling for the chromatin accessibility state of shared regions (p <0.001). Furthermore, MS susceptibility regions are preferentially targeted by both EBNA2 and VDR than by EBNA2 alone (enrichment difference = 1.722-fold, p = 0.0267). Taken together, these findings demonstrate that EBV participates in the gene-environment interactions that predispose to MS.
Journal Article
Tracing mitochondrial marks of neuronal aging in iPSCs-derived neurons and directly converted neurons
2025
This study aims to determine if neurons derived from induced pluripotent stem cells (iPSCsNs) and directly converted neurons (iNs) from the same source cells exhibit changes in mitochondrial properties related to aging. This research addresses the uncertainty around whether aged iPSCsNs retain aging-associated mitochondrial impairments upon transitioning through pluripotency while direct conversion maintains these impairments. We observe that both aged models exhibit characteristics of aging, such as decreased ATP, mitochondrial membrane potential, respiration, NAD
+
/NADH ratio, and increased radicals and mitochondrial mass. In addition, both neuronal models show a fragmented mitochondrial network. However, aged iPSCsNs do not exhibit a metabolic shift towards glycolysis, unlike aged iNs. Furthermore, mRNA expression differed significantly between aged iPSCsNs and aged iNs. The study concludes that aged iPSCsNs may differ in transcriptomics and the aging-associated glycolytic shift but can be a valuable tool for studying specific feature of mitochondrial neuronal aging in vitro alongside aged iNs.
Side-by-side modeling of iPSC-derived neurons (iPSCsNs) and directly converted neurons (iNs) from the same aged donor shows both retain mitochondrial aging traits, though iPSCsNs exhibit partial rejuvenation in transcriptomics and metabolic shift.
Journal Article
Extraction Methods for Brain Biopsy NMR Metabolomics: Balancing Metabolite Stability and Protein Precipitation
2024
Background/Objectives: Metabolic profiling of tissue samples via liquid-state nuclear magnetic resonance (NMR) requires the extraction of polar metabolites in a suitable deuterated solvent. Such methods often prioritise metabolite recovery over protein removal due to the relatively low sensitivity of NMR metabolomics and the routine use of methods able to supress residual protein signals. However, residual protein may impact metabolite integrity and the metabolite stability after NMR sample preparation is often overlooked. This study aimed to investigate the effect of residual protein contamination in rodent brain extracts and identify a reproducible extraction method that optimises metabolite recovery while ensuring sample stability. Methods: The performance of acetonitrile/water (50–100% MeCN), methanol/water (50–100% MeOH), and methanol/water/chloroform (MeOH/H2O/CHCl3) were assessed for extraction efficiency, reproducibility, residual protein contamination, and metabolite stability up to eight hours post NMR sample preparation. Results: Aspartate and glutamate deuteration were observed in 50% MeCN, 50% MeOH, and 67% MeOH extractions along with the conversion of N-acetyl aspartate to aspartate and acetate in 50% MeCN and 50% MeOH extractions. Both observations correlated with residual protein contamination and, thus, are a result of inadequate protein precipitation, as confirmed by ultrafiltration. MeOH/H2O/CHCl3 extraction preserved the stability of these metabolites while maintaining good extraction efficiency and reproducibility. Conclusions: Thus, we recommend MeOH/H2O/CHCl3 extraction for untargeted brain NMR metabolic profiling due to its effective protein precipitation and reliable performance. Nonetheless, the performance of detecting metabolites prone to oxidation such as ascorbate and glutathione is not improved by this method.
Journal Article