Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
50
result(s) for
"Caggiano, Alessandra"
Sort by:
Tool Wear Prediction in Ti-6Al-4V Machining through Multiple Sensor Monitoring and PCA Features Pattern Recognition
by
Caggiano, Alessandra
in
Artificial intelligence
,
artificial neural network
,
dimensionality reduction
2018
Machining of titanium alloys is characterised by extremely rapid tool wear due to the high cutting temperature and the strong adhesion at the tool-chip and tool-workpiece interface, caused by the low thermal conductivity and high chemical reactivity of Ti alloys. With the aim to monitor the tool conditions during dry turning of Ti-6Al-4V alloy, a machine learning procedure based on the acquisition and processing of cutting force, acoustic emission and vibration sensor signals during turning is implemented. A number of sensorial features are extracted from the acquired sensor signals in order to feed machine learning paradigms based on artificial neural networks. To reduce the large dimensionality of the sensorial features, an advanced feature extraction methodology based on Principal Component Analysis (PCA) is proposed. PCA allowed to identify a smaller number of features (k = 2 features), the principal component scores, obtained through linear projection of the original d features into a new space with reduced dimensionality k = 2, sufficient to describe the variance of the data. By feeding artificial neural networks with the PCA features, an accurate diagnosis of tool flank wear (VBmax) was achieved, with predicted values very close to the measured tool wear values.
Journal Article
Laser Direct Metal Deposition of 2024 Al Alloy: Trace Geometry Prediction via Machine Learning
by
Caggiano, Alessandra
,
Caiazzo, Fabrizia
in
Additive manufacturing
,
Aerospace industry
,
Aluminum alloys
2018
Laser direct metal deposition is an advanced additive manufacturing technology suitably applicable in maintenance, repair, and overhaul of high-cost products, allowing for minimal distortion of the workpiece, reduced heat affected zones, and superior surface quality. Special interest is growing for the repair and coating of 2024 aluminum alloy parts, extensively utilized for a wide range of applications in the automotive, military, and aerospace sectors due to its excellent plasticity, corrosion resistance, electric conductivity, and strength-to-weight ratio. A critical issue in the laser direct metal deposition process is related to the geometrical parameters of the cross-section of the deposited metal trace that should be controlled to meet the part specifications. In this research, a machine learning approach based on artificial neural networks is developed to find the correlation between the laser metal deposition process parameters and the output geometrical parameters of the deposited metal trace produced by laser direct metal deposition on 5-mm-thick 2024 aluminum alloy plates. The results show that the neural network-based machine learning paradigm is able to accurately estimate the appropriate process parameters required to obtain a specified geometry for the deposited metal trace.
Journal Article
Smart Multi-Sensor Monitoring in Drilling of CFRP/CFRP Composite Material Stacks for Aerospace Assembly Applications
2020
Composite material parts are typically laid out in near-net-shape, i.e., very close to the finished product configuration. However, further machining processes are often required to meet dimensional and tolerance requirements. Drilling, edge trimming and slotting are the main cutting processes employed for carbon fiber-reinforced plastic (CFRP) composite materials. In particular, drilling stands out as the most widespread machining process of CFRP composite parts, chiefly in the aerospace industrial sector, due to the extensive use of mechanical joints, such as rivets, rather than welded or bonded joints. However, CFRP drilling is markedly challenging: due to CFRP abrasiveness, inhomogeneity and anisotropic properties, tool wear rates are inherently high leading to superior cutting forces and detrimental effects on workpiece surface quality and material integrity. Damage such as delamination, cracks or matrix thermal degradation is often observed as the result of uncontrolled tool wear or improper machining conditions. Sensor monitoring of drilling operations is, therefore, highly desirable for process conditions’ optimization and tool life maximization. The development of this kind of automated control technologies for process and tool state evaluation can notably contribute to the reduction of scraps and tool costs as well as to the improvement of process productivity in the drilling of CFRP composite material parts. In this paper, multi-sensor process monitoring based on thrust force and torque signal detection and analysis was applied during drilling of CFRP/CFRP laminate stacks for the assembly of aircraft fuselage panels with the scope to evaluate the tool wear state. Different signal-processing methods were utilised to extract diverse types of features from the detected sensor signals. A machine-learning approach based on an artificial neural network (ANN) was implemented to make smart decisions on the timely execution of tool change, which is highly functional for CFRP drilling process automation.
Journal Article
Smart Tool Wear Monitoring of CFRP/CFRP Stack Drilling Using Autoencoders and Memory-Based Neural Networks
by
Caggiano, Alessandra
,
Nele, Luigi
,
Mattera, Giulio
in
Artificial intelligence
,
autoencoder
,
Automation
2023
The drilling of carbon fiber-reinforced plastic (CFRP) materials is a key process in the aerospace industry, where ensuring high product quality is a critical issue. Low-quality of final products may be caused by the occurrence of drilling-induced defects such as delamination, which can be highly affected by the tool conditions. The abrasive carbon fibers generally produce very fast tool wear with negative effects on the hole quality. This suggests the need to develop a method able to accurately monitor the tool wear development during the drilling process in order to set up optimal tool management strategies. Nowadays, different types of sensors can be employed to acquire relevant signals associated with process variables which are useful to monitor tool wear during drilling. Moreover, the increasing computational capacity of modern computers allows the successful development of procedures based on Artificial Intelligence (AI) techniques for signal processing and decision making aimed at online tool condition monitoring. In this work, an advanced tool condition monitoring method based on the employment of autoencoders and gated recurrent unit (GRU) recurrent neural networks (RNN) is developed and implemented to estimate tool wear in the drilling of CFRP/CFRP stacks. This method exploits the automatic feature extraction capability of autoencoders to obtain relevant features from the sensor signals acquired by a multiple sensor system during the drilling process and the memory abilities of GRU to estimate tool wear based on the extracted sensor signal features. The results obtained with the proposed method are compared with other neural network approaches, such as traditional feedforward neural networks, and considerations are made on the influence that memory-based hyperparameters have on tool wear estimation performance.
Journal Article
Machining of Fibre Reinforced Plastic Composite Materials
2018
Fibre reinforced plastic composite materials are difficult to machine because of the anisotropy and inhomogeneity characterizing their microstructure and the abrasiveness of their reinforcement components. During machining, very rapid cutting tool wear development is experienced, and surface integrity damage is often produced in the machined parts. An accurate selection of the proper tool and machining conditions is therefore required, taking into account that the phenomena responsible for material removal in cutting of fibre reinforced plastic composite materials are fundamentally different from those of conventional metals and their alloys. To date, composite materials are increasingly used in several manufacturing sectors, such as the aerospace and automotive industry, and several research efforts have been spent to improve their machining processes. In the present review, the key issues that are concerning the machining of fibre reinforced plastic composite materials are discussed with reference to the main recent research works in the field, while considering both conventional and unconventional machining processes and reporting the more recent research achievements. For the different machining processes, the main results characterizing the recent research works and the trends for process developments are presented.
Journal Article
Artificial Neural Networks for Tool Wear Prediction Based on Sensor Fusion Monitoring of CFRP/CFRP Stack Drilling
by
Caggiano, Alessandra
,
Nele, Luigi
in
Acoustic emission testing
,
Airframes
,
Artificial neural networks
2018
An intelligent sensor monitoring procedure was implemented to monitor the drilling of carbon fiber reinforced plastic (CFRP)/CFRP stacks used in the assembly of aircraft fuselage panels; the signals from these sensors were then used to develop an artificial neural network-based cognitive paradigm to predict tool wear, which would allow on-line decision making regarding tool replacement. A multiple sensor system, capable of acquiring signals relative to thrust force, torque, and acoustic emission RMS, was employed during experimental drilling tests, under different rotational speed and feed conditions. Advanced sensor signal processing techniques, including signal conditioning and segmentation, as well as statistical feature extraction and data fusion, were implemented on the acquired signals. Selected statistical features extracted from the multiple sensor signals in the time domain were combined via sensor fusion techniques to construct sensor fusion pattern vectors. These were then fed to artificial neural networks for pattern recognition, with the goal of finding correlations which would allow the prediction of the corresponding tool wear. The tool wear prediction performed by the artificial neural network can be utilized to support decision making at the appropriate time for worn tool replacement, which is extremely useful for drilling automation, as well as for estimating the quality of the drilled holes.
Journal Article
Vibration Sensor Monitoring of Nickel-Titanium Alloy Turning for Machinability Evaluation
by
Segreto, Tiziana
,
Teti, Roberto
,
Caggiano, Alessandra
in
cognitive pattern recognition
,
machinability
,
Neural networks
2017
Nickel-Titanium (Ni-Ti) alloys are very difficult-to-machine materials causing notable manufacturing problems due to their unique mechanical properties, including superelasticity, high ductility, and severe strain-hardening. In this framework, the aim of this paper is to assess the machinability of Ni-Ti alloys with reference to turning processes in order to realize a reliable and robust in-process identification of machinability conditions. An on-line sensor monitoring procedure based on the acquisition of vibration signals was implemented during the experimental turning tests. The detected vibration sensorial data were processed through an advanced signal processing method in time-frequency domain based on wavelet packet transform (WPT). The extracted sensorial features were used to construct WPT pattern feature vectors to send as input to suitably configured neural networks (NNs) for cognitive pattern recognition in order to evaluate the correlation between input sensorial information and output machinability conditions.
Journal Article
Digital factory technologies for robotic automation and enhanced manufacturing cell design
2018
The fourth industrial revolution is characterised by the increased use of digital tools, allowing for the virtual representation of a real production environment at different levels, from the entire production plant to a single machine or a specific process or operation. In this framework, Digital Factory technologies, based on the employment of digital modelling and simulation tools, can be used for short-term analysis and validation of production control strategies or for medium term production planning or production system design/redesign. In this research work, a Digital Factory methodology is proposed to support the enhancement of an existing manufacturing cell for the fabrication of aircraft engine turbine vanes via robotic automation of its deburring station. To configure and verify the correct layout of the upgraded manufacturing cell with the aim to increase its performance in terms of resource utilization and throughput time, 3D Motion Simulation and Discrete Event Simulation are jointly employed for the modeling and simulation of different cell settings for proper layout configuration, safe motion planning and resource utilization improvement. Validation of the simulation model is carried out by collecting actual data from the physical reconfigured manufacturing cell and comparing these data to the model forecast with the aim to adapt the digital model accordingly to closely represent the physical manufacturing system.
Journal Article
Sustainability Enhancement of a Turbine Vane Manufacturing Cell through Digital Simulation-Based Design
by
Teti, Roberto
,
Caggiano, Alessandra
,
Marzano, Adelaide
in
3D digital human modelling
,
Aerospace engineering
,
Business metrics
2016
Modern manufacturing systems should satisfy emerging needs related to sustainable development. The design of sustainable manufacturing systems can be valuably supported by simulation, traditionally employed mainly for time and cost reduction. In this paper, a multi-purpose digital simulation approach is proposed to deal with sustainable manufacturing systems design through Discrete Event Simulation (DES) and 3D digital human modelling. DES models integrated with data on power consumption of the manufacturing equipment are utilized to simulate different scenarios with the aim to improve productivity as well as energy efficiency, avoiding resource and energy waste. 3D simulation based on digital human modelling is employed to assess human factors issues related to ergonomics and safety of manufacturing systems. The approach is implemented for the sustainability enhancement of a real manufacturing cell of the aerospace industry, automated by robotic deburring. Alternative scenarios are proposed and simulated, obtaining a significant improvement in terms of energy efficiency (−87%) for the new deburring cell, and a reduction of energy consumption around −69% for the coordinate measuring machine, with high potential annual energy cost savings and increased energy efficiency. Moreover, the simulation-based ergonomic assessment of human operator postures allows 25% improvement of the workcell ergonomic index.
Journal Article
Cloud manufacturing architecture for part quality assessment
by
Segreto, Tiziana
,
Teti, Roberto
,
Caggiano, Alessandra
in
Aeronautics
,
cloud manufacturing
,
Composite materials
2020
In this work, a cloud manufacturing architecture aimed at offering on-demand services for part quality assessment is presented and demonstrated with reference to an aeronautical industry application. The developed architecture is based on a three-level structure and considers two non-contact metrological procedures to be integrated via cloud service: laser-based 3D metrology and ultrasonic non-destructive inspection. The combination of these two techniques allows to measure part features and detect possible defects associated with the outer part geometry as well as the inner material structure. The data coming from the two metrological procedures and pre-processed at fog level are sent to the cloud that performs their integration with the aim to allow for the 3D visualization and manipulation of the heterogeneous metrological data into a single-user interface for the holistic part quality evaluation. The validation of the cloud manufacturing architecture for part quality assessment is performed on a composite material component employed in the aeronautical industry. Through the cloud platform, the heterogeneous data from the two non-contact metrological techniques are integrated, and the newly developed user interface allows for the simultaneous visualization and analysis of the 3D metrology and ultrasonic information for detecting geometrical defects and internal flaws of the inspected component.
Journal Article