Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
44
result(s) for
"Cai, Benzhi"
Sort by:
Regulation of cardiomyocyte fate plasticity: a key strategy for cardiac regeneration
2021
With the high morbidity and mortality rates, cardiovascular diseases have become one of the most concerning diseases worldwide. The heart of adult mammals can hardly regenerate naturally after injury because adult cardiomyocytes have already exited the cell cycle, which subseqently triggers cardiac remodeling and heart failure. Although a series of pharmacological treatments and surgical methods have been utilized to improve heart functions, they cannot replenish the massive loss of beating cardiomyocytes after injury. Here, we summarize the latest research progress in cardiac regeneration and heart repair through altering cardiomyocyte fate plasticity, which is emerging as an effective strategy to compensate for the loss of functional cardiomyocytes and improve the impaired heart functions. First, residual cardiomyocytes in damaged hearts re-enter the cell cycle to acquire the proliferative capacity by the modifications of cell cycle-related genes or regulation of growth-related signals. Additionally, non-cardiomyocytes such as cardiac fibroblasts, were shown to be reprogrammed into cardiomyocytes and thus favor the repair of damaged hearts. Moreover, pluripotent stem cells have been shown to transform into cardiomyocytes to promote heart healing after myocardial infarction (MI). Furthermore, in vitro and in vivo studies demonstrated that environmental oxygen, energy metabolism, extracellular factors, nerves, non-coding RNAs, etc. play the key regulatory functions in cardiac regeneration. These findings provide the theoretical basis of targeting cellular fate plasticity to induce cardiomyocyte proliferation or formation, and also provide the clues for stimulating heart repair after injury.
Journal Article
The long noncoding RNA lncCIRBIL disrupts the nuclear translocation of Bclaf1 alleviating cardiac ischemia–reperfusion injury
2021
Cardiac ischemia–reperfusion (I/R) injury is a pathological process resulting in cardiomyocyte death. The present study aims to evaluate the role of the long noncoding RNA Cardiac Injury-Related Bclaf1-Inhibiting LncRNA (lncCIRBIL) on cardiac I/R injury and delineate its mechanism of action. The level of lncCIRBIL is reduced in I/R hearts. Cardiomyocyte-specific transgenic overexpression of lncCIRBIL reduces infarct area following I/R injury. Knockout of lncCIRBIL in mice exacerbates cardiac I/R injury. Qualitatively, the same results are observed in vitro. LncCIRBIL directly binds to BCL2-associated transcription factor 1 (Bclaf1), to inhibit its nuclear translocation. Cardiomyocyte-specific transgenic overexpression of Bclaf1 worsens, while partial knockout of Bclaf1 mitigates cardiac I/R injury. Meanwhile, partial knockout of Bclaf1 abrogates the detrimental effects of lncCIRBIL knockout on cardiac I/R injury. Collectively, the protective effect of lncCIRBIL on I/R injury is accomplished by inhibiting the nuclear translocation of Bclaf1. LncCIRBIL and Bclaf1 are potential therapeutic targets for ischemic cardiac disease.
Cardiac ischemia–reperfusion (I/R) injury represents a key threat to human health. This study reveals that the long noncoding RNA lncRNA-CIRBIL is protective against I/R injury by inhibiting the nuclear translocation of Bclaf1.
Journal Article
LncRNA-LncDACH1 mediated phenotypic switching of smooth muscle cells during neointimal hyperplasia in male arteriovenous fistulas
2024
Arteriovenous fistulas (AVFs) are the most common vascular access points for hemodialysis (HD), but they have a high incidence of postoperative dysfunction, mainly due to excessive neointimal hyperplasia (NIH). Our previous studies have revealed a highly conserved LncRNA-LncDACH1 as an important regulator of cardiomyocyte and fibroblast proliferation. Herein, we find that LncDACH1 regulates NIH in AVF in male mice with conditional knockout of smooth muscle cell-specific LncDACH1 and in male mice model of AVF with LncDACH1 overexpression by adeno-associated virus. Mechanistically, silence of LncDACH1 activates p-AKT through promoting the expression of heat shock protein 90 (HSP90) and serine/arginine-rich splicing factor protein kinase 1 (SRPK1). Moreover, LncDACH1 is transcriptionally activated by transcription factor KLF9 that binds directly to the promoter region of the LncDACH1 gene. In this work, during AVF NIH, LncDACH1 is downregulated by KLF9 and promotes NIH through the HSP90/ SRPK1/ AKT signaling axis.
Arteriovenous fistulas are the most common vascular access points for hemodialysis, but they have a high incidence of postoperative dysfunction, mainly due to excessive neointimal hyperplasia. Here, the author shows that LncDACH1 regulates NIH through the HSP90/ SRPK1/ AKT signaling axis.
Journal Article
Stem Cell-Derived Exosome in Cardiovascular Diseases: Macro Roles of Micro Particles
2018
The stem cell-based therapy has emerged as the promising therapeutic strategies for cardiovascular diseases (CVDs). Recently, increasing evidence suggest stem cell-derived active exosomes are important communicators among cells in the heart via delivering specific substances to the adjacent/distant target cells. These exosomes and their contents such as certain proteins, miRNAs and lncRNAs exhibit huge beneficial effects on preventing heart damage and promoting cardiac repair. More importantly, stem cell-derived exosomes are more effective and safer than stem cell transplantation. Therefore, administration of stem cell-derived exosomes will expectantly be an alternative stem cell-based therapy for the treatment of CVDs. Furthermore, modification of stem cell-derived exosomes or artificial synthesis of exosomes will be the new therapeutic tools for CVDs in the future. In addition, stem cell-derived exosomes also have been implicated in the diagnosis and prognosis of CVDs. In this review, we summarize the current advances of stem cell-derived exosome-based treatment and prognosis for CVDs, including their potential benefits, underlying mechanisms and limitations, which will provide novel insights of exosomes as a new tool in clinical therapeutic translation in the future.
Journal Article
Cardiac repair using regenerating neonatal heart tissue-derived extracellular vesicles
Neonatal mammalian hearts are capable of regenerating by inducing cardiomyocyte proliferation after injury. However, this regenerative capability in adult mammalian hearts almost disappears. Extracellular vesicles (EVs) have been shown to play vital cardioprotective roles in heart repair. Here, we report that EVs from regenerating neonatal heart tissues, after apical resection surgery (AR-Neo-EVs), exhibit stronger pro-proliferative, anti-apoptotic, and pro-angiogenesis activities than EVs from neonatal mouse cardiac tissues (Neo-EVs), effects which are absent in adult mouse heart-derived EVs (Adu-EVs). Proteomic analysis reveals the expression of Wdr75 protein, a regulator of p53, is higher in AR-Neo-EVs than in Neo-EVs. It is shown the regenerative potential of AR-Neo-EVs is abrogated when Wdr75 is knocked down. We further show that delivery of AR-Neo-EVs by sodium alginate hydrogel microspheres is an effective treatment in myocardial infraction. This work shows the potential of using EVs from regenerating tissue to trigger protective and regenerative mechanisms.
Unlike neonatal mammalian hearts, adult hearts have limited regenerative capacity. Here, the authors explore the use of extracellular vesicles collected from neonatal hearts flowing damage, explore the difference in protein expression and delivery potential to trigger myocardial repair.
Journal Article
Cardiomyocyte differentiation of mesenchymal stem cells from bone marrow: new regulators and its implications
by
Guo, Xiaofei
,
Cai, Benzhi
,
Zagidullin, Naufal
in
Animals
,
Biomedical and Life Sciences
,
Biomedical Engineering and Bioengineering
2018
In the past years, cardiac mortality has decreased, but cardiac diseases are still responsible for millions of deaths every year worldwide. Bone-marrow mesenchymal stem cells (BMSCs) transplantation may be a promising therapeutic strategy because of its capacity to differentiate into cardiac cells. Current research indicates that chemical substances, microRNAs, and cytokines have biological functions that regulate the cardiomyocytes differentiation of BMSCs. In this review, we chiefly summarize the regulatory factors that induce BMSCs to differentiate into cardiomyocytes.
Journal Article
IFN-γ reprograms cardiac microvascular endothelial cells to mediate doxorubicin transport and influences the sensitivity of mice to doxorubicin-induced cardiotoxicity
Doxorubicin (DOX) is a first-line chemotherapy agent known for its cardiac toxicity. DOX-induced cardiotoxicity (DIC) severely limits the use for treating malignant tumors and is associated with a poor prognosis. The sensitivity to DIC varies among patients, but the precise mechanisms remain elusive. Here we constructed a mouse model of DIC using DOX to investigate potential mechanisms contributing to the differential susceptibility to DIC. Through surface-enhanced Raman spectroscopy and single-cell RNA sequencing, we explored the mechanisms underlying DIC phenotypic variations. In vitro and in vivo studies with small-molecule drugs were conducted. DIC-insensitive mice displayed preserved ejection fractions, lower DOX levels in cardiac tissues and higher levels in the serum. Single-cell RNA sequencing revealed differences of gene expression in cardiac endothelial cells between DIC-insensitive and DIC-sensitive groups. The expression of IFN-γ pathway-related genes was high in DIC-insensitive mice. IFN-γ administration decreased the DOX distribution in cardiac tissues, whereas PPAR-γ activation increased DIC susceptibility. IFN-γ stimulation upregulated P-glycoprotein expression, leading to increased DOX efflux and DIC insensitivity. Our model provides insights into the mechanisms of DIC sensitivity and potential preventive strategies.
Mechanisms behind doxorubicin sensitivity revealed in mice
Doxorubicin is a powerful cancer drug, but it can harm the heart, leading to a condition called doxorubicin-induced cardiotoxicity (DIC). Some people are more affected by DIC than others, and scientists want to understand why. They found that the heterogeneity observed among endothelial cells (ECs) plays a potential role in determining DIC sensitivity. In mice less sensitive to DIC, reprogramming of ECs increases levels of P-glycoprotein (P-gp), which helps to pump drugs out of cells. They discovered that activating a pathway involving IFN-γ increased P-gp levels, reducing heart damage. Conversely, activating another pathway, PPAR-γ, decreased P-gp levels and increased heart damage. These findings provide new insights into DIC pathogenesis and suggest that boosting P-gp in ECs could be a new strategy to protect against DIC. This summary was initially drafted using artificial intelligence, then revised and fact-checked by the author.
Journal Article
Targeting LncDACH1 promotes cardiac repair and regeneration after myocardium infarction
by
Wang Xiuxiu
,
Naufal, Zagidullin
,
Xu, Binbin
in
Cardiomyocytes
,
Cell cycle
,
Coronary artery disease
2020
Neonatal mammalian heart maintains a transient regeneration capacity after birth, whereas this regeneration ability gradually loses in the postnatal heart. Thus, the reactivation of cardiomyocyte proliferation is emerging as a key strategy for inducing heart regeneration in adults. We have reported that a highly conserved long noncoding RNA (lncRNA) LncDACH1 was overexpressed in the failing hearts. Here, we found that LncDACH1 was gradually upregulated in the postnatal hearts. Cardiac-specific overexpression of LncDACH1 (TG) in mice suppressed neonatal heart regeneration and worsened cardiac function after apical resection. Conversely, in vivo cardiac conditional knockout of LncDACH1 (CKO) and adenovirus-mediated silencing of endogenous LncDACH1 reactivated cardiomyocyte-proliferative potential and promoted heart regeneration after myocardial infarction (MI) in juvenile and adult mice. Mechanistically, LncDACH1 was found to directly bind to protein phosphatase 1 catalytic subunit alpha (PP1A), and in turn, limit its dephosphorylation activity. Consistently, PP1A siRNA or pharmacological blockers of PP1A abrogated cardiomyocyte mitosis induced by LncDACH1 silencing. Furthermore, LncDACH1 enhanced yes-associated protein 1 (YAP1) phosphorylation and reduced its nuclear translocation by binding PP1A. Verteporfin, a YAP1 inhibitor decreased LncDACH1 silencing-induced cardiomyocyte proliferation. In addition, targeting a conserved fragment of LncDACH1 caused cell cycle re-entry of human iPSC-derived cardiomyocytes. Collectively, LncDACH1 governs heart regeneration in postnatal and ischemic hearts via regulating PP1A/YAP1 signal, which confers a novel therapeutic strategy for ischemic heart diseases.
Journal Article
miR-149-3p Regulates the Switch between Adipogenic and Osteogenic Differentiation of BMSCs by Targeting FTO
2019
Bone marrow-derived mesenchymal stem cells (BMSCs) have been suggested to possess the capacity to differentiate into different cell lineages. Maintaining a balanced stem cell differentiation program is crucial to the bone microenvironment and bone development. MicroRNAs (miRNAs) have played a critical role in regulating the differentiation of BMSCs into particular lineage. However, the role of miR-149-3p in the adipogenic and osteogenic differentiation of BMSCs has not been extensively discovered. In this study, we aimed to detect the expression levels of miR-149-3p during the differentiation of BMSCs and investigate whether miR-149-3p participated in the lineage choice of BMSCs or not. Compared with mimic-negative control (NC), miR-149-3p mimic decreased the adipogenic differentiation potential of BMSCs and increased the osteogenic differentiation potential. Further analysis revealed that overexpression of miR-149-3p repressed the expression of fat mass and obesity-associated (FTO) gene through binding to the 3ʹ UTR of the FTO mRNA. Also, the role of miR-149-3p mimic in inhibiting adipogenic lineage differentiation and potentiating osteogenic lineage differentiation was mainly through targeting FTO, which also played an important role in regulating body weight and fat mass. In addition, BMSCs treated with miR-149-3p anti-miRNA oligonucleotide (AMO) exhibited higher potential to differentiate into adipocytes and lower tendency to differentiate into osteoblasts compared with BMSCs transfected with NC. In summary, our results detected the effects of miR-149-3p in cell fate specification of BMSCs and revealed that miR-149-3p inhibited the adipogenic differentiation of BMSCs via a miR-149-3p/FTO regulatory axis. This study provided cellular and molecular insights into the observation that miR-149-3p was a prospective candidate gene for BMSC-based bone tissue engineering in treating osteoporosis.
Journal Article
N-Acetyltransferase 10 represses Uqcr11 and Uqcrb independently of ac4C modification to promote heart regeneration
2024
Translational control is crucial for protein production in various biological contexts. Here, we use Ribo-seq and RNA-seq to show that genes related to oxidative phosphorylation are translationally downregulated during heart regeneration. We find that Nat10 regulates the expression of Uqcr11 and Uqcrb mRNAs in mouse and human cardiomyocytes. In mice, overexpression of Nat10 in cardiomyocytes promotes cardiac regeneration and improves cardiac function after injury. Conversely, treating neonatal mice with Remodelin—a Nat10 pharmacological inhibitor—or genetically removing Nat10 from their cardiomyocytes both inhibit heart regeneration. Mechanistically, Nat10 suppresses the expression of Uqcr11 and Uqcrb independently of its ac4C enzyme activity. This suppression weakens mitochondrial respiration and enhances the glycolytic capacity of the cardiomyocytes, leading to metabolic reprogramming. We also observe that the expression of Nat10 is downregulated in the cardiomyocytes of P7 male pig hearts compared to P1 controls. The levels of Nat10 are also lower in female human failing hearts than non-failing hearts. We further identify the specific binding regions of Nat10, and validate the pro-proliferative effects of Nat10 in cardiomyocytes derived from human embryonic stem cells. Our findings indicate that Nat10 is an epigenetic regulator during heart regeneration and could potentially become a clinical target.
Here, Ma et al. investigate the translational profile of cardiac regeneration, pointing to Nat10 as a key regulator of cardiomyocyte proliferative potential, and describing how it regulates cardiac gene expression.
Journal Article