Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
7 result(s) for "Cain, Anael"
Sort by:
Cellular communities reveal trajectories of brain ageing and Alzheimer’s disease
Alzheimer’s disease (AD) has recently been associated with diverse cell states 1 – 11 , yet when and how these states affect the onset of AD remains unclear. Here we used a data-driven approach to reconstruct the dynamics of the brain’s cellular environment and identified a trajectory leading to AD that is distinct from other ageing-related effects. First, we built a comprehensive cell atlas of the aged prefrontal cortex from 1.65 million single-nucleus RNA-sequencing profiles sampled from 437 older individuals, and identified specific glial and neuronal subpopulations associated with AD-related traits. Causal modelling then prioritized two distinct lipid-associated microglial subpopulations—one drives amyloid-β proteinopathy while the other mediates the effect of amyloid-β on tau proteinopathy—as well as an astrocyte subpopulation that mediates the effect of tau on cognitive decline. To model the dynamics of cellular environments, we devised the BEYOND methodology, which identified two distinct trajectories of brain ageing, each defined by coordinated progressive changes in certain cellular communities that lead to (1) AD dementia or (2) alternative brain ageing. Thus, we provide a cellular foundation for a new perspective on AD pathophysiology that informs personalized therapeutic development, targeting different cellular communities for individuals on the path to AD or to alternative brain ageing. A comprehensive cell atlas of the aged prefrontal cortex identifies two distinct cellular trajectories of ageing driven by specific glial and neuronal subpopulations, some of which are associated with clinicopathologic traits that define Alzheimer’s disease.
Multicellular communities are perturbed in the aging human brain and Alzheimer’s disease
The role of different cell types and their interactions in Alzheimer’s disease (AD) is a complex and open question. Here, we pursued this question by assembling a high-resolution cellular map of the aging frontal cortex using single-nucleus RNA sequencing of 24 individuals with a range of clinicopathologic characteristics. We used this map to infer the neocortical cellular architecture of 638 individuals profiled by bulk RNA sequencing, providing the sample size necessary for identifying statistically robust associations. We uncovered diverse cell populations associated with AD, including a somatostatin inhibitory neuronal subtype and oligodendroglial states. We further identified a network of multicellular communities, each composed of coordinated subpopulations of neuronal, glial and endothelial cells, and we found that two of these communities are altered in AD. Finally, we used mediation analyses to prioritize cellular changes that might contribute to cognitive decline. Thus, our deconstruction of the aging neocortex provides a roadmap for evaluating the cellular microenvironments underlying AD and dementia. By inferring the cellular landscape of the neocortex in 638 aged individuals from RNA profiles, the authors uncovered unique cellular communities composed of coordinated populations of multiple cell types, which were altered in Alzheimer’s disease.
Stroke genetics informs drug discovery and risk prediction across ancestries
Previous genome-wide association studies (GWASs) of stroke - the second leading cause of death worldwide - were conducted predominantly in populations of European ancestry(1,2). Here, in cross-ancestry GWAS meta-analyses of 110,182 patients who have had a stroke (five ancestries, 33% non-European) and 1,503,898 control individuals, we identify association signals for stroke and its subtypes at 89 (61 new) independent loci: 60 in primary inverse-variance-weighted analyses and 29 in secondary meta-regression and multitrait analyses. On the basis of internal cross-ancestry validation and an independent follow-up in 89,084 additional cases of stroke (30% non-European) and 1,013,843 control individuals, 87% of the primary stroke risk loci and 60% of the secondary stroke risk loci were replicated (P < 0.05). Effect sizes were highly correlated across ancestries. Cross-ancestry fine-mapping, in silico mutagenesis analysis(3), and transcriptome-wide and proteome-wide association analyses revealed putative causal genes (such as SH3PXD2A and FURIN) and variants (such as at GRK5 and NOS3). Using a three-pronged approach(4), we provide genetic evidence for putative drug effects, highlighting F11, KLKB1, PROC, GP1BA, LAMC2 and VCAM1 as possible targets, with drugs already under investigation for stroke for F11 and PROC. A polygenic score integrating cross-ancestry and ancestry-specific stroke GWASs with vascular-risk factor GWASs (integrative polygenic scores) strongly predicted ischaemic stroke in populations of European, East Asian and African ancestry(5). Stroke genetic risk scores were predictive of ischaemic stroke independent of clinical risk factors in 52,600 clinical-trial participants with cardiometabolic disease. Our results provide insights to inform biology, reveal potential drug targets and derive genetic risk prediction tools across ancestries.
Multi-cellular communities are perturbed in the aging human brain and Alzheimer’s disease
The role of different cell types and their interactions in Alzheimer’s disease (AD) is an open question. Here we pursued it by assembling a high-resolution cellular map of the aging frontal cortex by single nucleus RNA-seq of 24 individuals with different clinicopathologic characteristics. We used the map to infer the neocortical cellular architecture of 638 individuals profiled by bulk RNA-seq, providing the sample size necessary for identifying statistically robust associations. We uncovered diverse cell populations associated with AD, including inhibitory neuronal subtypes and oligodendroglial states. We further recovered a network of multicellular communities, each composed of coordinated subpopulations of neuronal, glial and endothelial cells, and found that two of these communities are altered in AD. Finally, we used mediation analyses to prioritize cellular changes that might contribute to cognitive decline. Thus, our deconstruction of the aging neocortex provides a roadmap for evaluating the cellular microenvironments underlying AD and dementia.
Early neuronal reprogramming and cell cycle reentry shape Alzheimer's disease progression
Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by hallmark pathologies, synaptic dysfunction, neuronal loss, gliosis and cognitive decline-dementia. Recent large-scale cell atlases of human AD brains exposed vulnerability of specific neuronal subtypes and highlighted early, coordinated glial responses, suggesting glial involvement in disease progression. However, the timing and nature of neuronal changes, differences between neuronal subtypes, and their coordination with glia remain unclear. Here, we used non-negative matrix factorization to identify co-expression gene programs in single-nucleus RNA profiles from the prefrontal cortex of 437 samples from donors whose clinical symptoms ranged between no cognitive impairment and AD dementia. This approach identified early coordinated transcriptional changes across all neuronal subtypes, preceding clinical symptoms of cognitive decline, and validated in independent snRNA-seq, proteomics, and ELISA datasets. We found neurons in AD undergo rapid modulation of synaptic genes, accompanied by convergence of neurons into two distinct programs: An oxidative stress and apoptosis program abundant in vulnerable neuronal subtypes, and a DNA damage and cell-cycle reentry program associated with resilient subtypes. Moreover, neuronal reprogramming was closely tied to glial responses, and diverged between AD to non-AD brain aging, suggesting neuro-glial coordinated reprogramming shapes the AD cascade and influences disease outcomes.
Cellular dynamics across aged human brains uncover a multicellular cascade leading to Alzheimer's disease
Alzheimer's Disease (AD) is a progressive neurodegenerative disease seen with advancing age. Recent studies have revealed diverse AD-associated cell states, yet when and how they impact the causal chain leading to AD remains unknown. To reconstruct the dynamics of the brain's cellular environment along the disease cascade and to distinguish between AD and aging effects, we built a comprehensive cell atlas of the aged prefrontal cortex from 1.64 million single-nucleus RNA-seq profiles. We associated glial, vascular and neuronal subpopulations with AD-related traits for 424 aging individuals, and aligned them along the disease cascade using causal modeling. We identified two distinct lipid-associated microglial subpopulations, one contributed to amyloid-β proteinopathy while the other mediated the effect of amyloid-beta in accelerating tau proteinopathy, as well as an astrocyte subpopulation that mediated the effect of tau on cognitive decline. To model the coordinated dynamics of the entire cellular environment we devised the BEYOND methodology which uncovered two distinct trajectories of brain aging that are defined by distinct sequences of changes in cellular communities. Older individuals are engaged in one of two possible trajectories, each associated with progressive changes in specific cellular communities that end with: (1) AD dementia or (2) alternative brain aging. Thus, we provide a cellular foundation for a new perspective of AD pathophysiology that could inform the development of new therapeutic interventions targeting cellular communities, while designing a different clinical management for those individuals on the path to AD or to alternative brain aging.Competing Interest StatementA.R. is a founder and equity holder of Celsius Therapeutics, an equity holder in Immunitas Therapeutics and until August 31, 2020 was an SAB member of Syros Pharmaceuticals, Neogene Therapeutics, Asimov and ThermoFisher Scientific. From August 1, 2020, A.R. is an employee of Genentech, a member of the Roche Group. All other co-authors have no relevant conflicts of interest.
Multi-cellular communities are perturbed in the aging human brain and with Alzheimer’s disease
Abstract The role of different cell types and their interactions in Alzheimer’s disease (AD) is an open question that we have pursued by mapping the human brain at the single cell level. Here, we present a high resolution cellular map of the aging frontal cortex by single nucleus RNA-sequencing of 24 individuals with different clinicopathologic characteristics; which we used to infer the cellular architecture of 640 individuals from bulk RNA-seq profiles. Powered by this sample of sufficient size to obtain statistically robust results, we uncovered AD associations with neuronal subtypes and oligodendroglial states. Moreover, we uncovered a network of cellular communities, each composed of different neuronal, glial and endothelial cells subpopulations whose frequencies are correlated across individuals. Two of the cellular communities are altered in relation to cognitive decline and tau pathology. Our work provides a roadmap for evaluating cross-cell type differences in the cellular environment of the AD brain. Competing Interest Statement A.R. is a founder and equity holder of Celsius Therapeutics, an equity holder in Immunitas Therapeutics and until August 31, 2020 was an SAB member of Syros Pharmaceuticals, Neogene Therapeutics, Asimov and ThermoFisher Scientific. From August 1, 2020, A.R. is an employee of Genentech, a member of the Roche Group.