Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
104 result(s) for "Cain, Nicholas"
Sort by:
Generalized leaky integrate-and-fire models classify multiple neuron types
There is a high diversity of neuronal types in the mammalian neocortex. To facilitate construction of system models with multiple cell types, we generate a database of point models associated with the Allen Cell Types Database. We construct a set of generalized leaky integrate-and-fire (GLIF) models of increasing complexity to reproduce the spiking behaviors of 645 recorded neurons from 16 transgenic lines. The more complex models have an increased capacity to predict spiking behavior of hold-out stimuli. We use unsupervised methods to classify cell types, and find that high level GLIF model parameters are able to differentiate transgenic lines comparable to electrophysiological features. The more complex model parameters also have an increased ability to differentiate between transgenic lines. Thus, creating simple models is an effective dimensionality reduction technique that enables the differentiation of cell types from electrophysiological responses without the need for a priori-defined features. This database will provide a set of simplified models of multiple cell types for the community to use in network models. Simplified neuron models, such as generalized leaky integrate-and-fire (GLIF) models, are extensively used in network modeling. Here the authors systematically generate and compare GLIF models of varying complexity for their ability to classify cell types in the Allen Cell Types Database and faithfully reproduce spike trains.
The Computational Properties of a Simplified Cortical Column Model
The mammalian neocortex has a repetitious, laminar structure and performs functions integral to higher cognitive processes, including sensory perception, memory, and coordinated motor output. What computations does this circuitry subserve that link these unique structural elements to their function? Potjans and Diesmann (2014) parameterized a four-layer, two cell type (i.e. excitatory and inhibitory) model of a cortical column with homogeneous populations and cell type dependent connection probabilities. We implement a version of their model using a displacement integro-partial differential equation (DiPDE) population density model. This approach, exact in the limit of large homogeneous populations, provides a fast numerical method to solve equations describing the full probability density distribution of neuronal membrane potentials. It lends itself to quickly analyzing the mean response properties of population-scale firing rate dynamics. We use this strategy to examine the input-output relationship of the Potjans and Diesmann cortical column model to understand its computational properties. When inputs are constrained to jointly and equally target excitatory and inhibitory neurons, we find a large linear regime where the effect of a multi-layer input signal can be reduced to a linear combination of component signals. One of these, a simple subtractive operation, can act as an error signal passed between hierarchical processing stages.
Large-scale topology and the default mode network in the mouse connectome
Significance Noninvasive brain imaging holds great promise for expanding our capabilities of treating human neurologic and psychiatric disorders. However, key limitations exist in human-only studies, and the ability to use animal models would greatly advance our understanding of human brain function. Mice offer sophisticated genetic and molecular methodology, but correlating these data to functional brain imaging in the mouse brain has remained a major hurdle. This study is the first, to our knowledge, to use whole-brain functional imaging to show large-scale functional architecture with structural correlates in the mouse. Perhaps more important is the finding of conservation in brain topology and default network among rodents and primates, thereby clearing the way for a bridge measurement between human and mouse models. Noninvasive functional imaging holds great promise for serving as a translational bridge between human and animal models of various neurological and psychiatric disorders. However, despite a depth of knowledge of the cellular and molecular underpinnings of atypical processes in mouse models, little is known about the large-scale functional architecture measured by functional brain imaging, limiting translation to human conditions. Here, we provide a robust processing pipeline to generate high-resolution, whole-brain resting-state functional connectivity MRI (rs-fcMRI) images in the mouse. Using a mesoscale structural connectome (i.e., an anterograde tracer mapping of axonal projections across the mouse CNS), we show that rs-fcMRI in the mouse has strong structural underpinnings, validating our procedures. We next directly show that large-scale network properties previously identified in primates are present in rodents, although they differ in several ways. Last, we examine the existence of the so-called default mode network (DMN)—a distributed functional brain system identified in primates as being highly important for social cognition and overall brain function and atypically functionally connected across a multitude of disorders. We show the presence of a potential DMN in the mouse brain both structurally and functionally. Together, these studies confirm the presence of basic network properties and functional networks of high translational importance in structural and functional systems in the mouse brain. This work clears the way for an important bridge measurement between human and rodent models, enabling us to make stronger conclusions about how regionally specific cellular and molecular manipulations in mice relate back to humans.
BioNet: A Python interface to NEURON for modeling large-scale networks
There is a significant interest in the neuroscience community in the development of large-scale network models that would integrate diverse sets of experimental data to help elucidate mechanisms underlying neuronal activity and computations. Although powerful numerical simulators (e.g., NEURON, NEST) exist, data-driven large-scale modeling remains challenging due to difficulties involved in setting up and running network simulations. We developed a high-level application programming interface (API) in Python that facilitates building large-scale biophysically detailed networks and simulating them with NEURON on parallel computer architecture. This tool, termed \"BioNet\", is designed to support a modular workflow whereby the description of a constructed model is saved as files that could be subsequently loaded for further refinement and/or simulation. The API supports both NEURON's built-in as well as user-defined models of cells and synapses. It is capable of simulating a variety of observables directly supported by NEURON (e.g., spikes, membrane voltage, intracellular [Ca++]), as well as plugging in modules for computing additional observables (e.g. extracellular potential). The high-level API platform obviates the time-consuming development of custom code for implementing individual models, and enables easy model sharing via standardized files. This tool will help refocus neuroscientists on addressing outstanding scientific questions rather than developing narrow-purpose modeling code.
Brain Modeling ToolKit: An open source software suite for multiscale modeling of brain circuits
Experimental studies in neuroscience are producing data at a rapidly increasing rate, providing exciting opportunities and formidable challenges to existing theoretical and modeling approaches. To turn massive datasets into predictive quantitative frameworks, the field needs software solutions for systematic integration of data into realistic, multiscale models. Here we describe the Brain Modeling ToolKit (BMTK), a software suite for building models and performing simulations at multiple levels of resolution, from biophysically detailed multi-compartmental, to point-neuron, to population-statistical approaches. Leveraging the SONATA file format and existing software such as NEURON, NEST, and others, BMTK offers a consistent user experience across multiple levels of resolution. It permits highly sophisticated simulations to be set up with little coding required, thus lowering entry barriers to new users. We illustrate successful applications of BMTK to large-scale simulations of a cortical area. BMTK is an open-source package provided as a resource supporting modeling-based discovery in the community.
Visual physiology of the layer 4 cortical circuit in silico
Despite advances in experimental techniques and accumulation of large datasets concerning the composition and properties of the cortex, quantitative modeling of cortical circuits under in-vivo-like conditions remains challenging. Here we report and publicly release a biophysically detailed circuit model of layer 4 in the mouse primary visual cortex, receiving thalamo-cortical visual inputs. The 45,000-neuron model was subjected to a battery of visual stimuli, and results were compared to published work and new in vivo experiments. Simulations reproduced a variety of observations, including effects of optogenetic perturbations. Critical to the agreement between responses in silico and in vivo were the rules of functional synaptic connectivity between neurons. Interestingly, after extreme simplification the model still performed satisfactorily on many measurements, although quantitative agreement with experiments suffered. These results emphasize the importance of functional rules of cortical wiring and enable a next generation of data-driven models of in vivo neural activity and computations.
A mesoscale connectome of the mouse brain
Comprehensive knowledge of the brain’s wiring diagram is fundamental for understanding how the nervous system processes information at both local and global scales. However, with the singular exception of the C. elegans microscale connectome, there are no complete connectivity data sets in other species. Here we report a brain-wide, cellular-level, mesoscale connectome for the mouse. The Allen Mouse Brain Connectivity Atlas uses enhanced green fluorescent protein (EGFP)-expressing adeno-associated viral vectors to trace axonal projections from defined regions and cell types, and high-throughput serial two-photon tomography to image the EGFP-labelled axons throughout the brain. This systematic and standardized approach allows spatial registration of individual experiments into a common three dimensional (3D) reference space, resulting in a whole-brain connectivity matrix. A computational model yields insights into connectional strength distribution, symmetry and other network properties. Virtual tractography illustrates 3D topography among interconnected regions. Cortico-thalamic pathway analysis demonstrates segregation and integration of parallel pathways. The Allen Mouse Brain Connectivity Atlas is a freely available, foundational resource for structural and functional investigations into the neural circuits that support behavioural and cognitive processes in health and disease. In mouse, an axonal connectivity map showing the wiring patterns across the entire brain has been created using an EGFP-expressing adeno-associated virus tracing technique, providing the first such whole-brain map for a vertebrate species. New whole-brain mapping resources With President Barack Obama's BRAIN (Brain Research through Advancing Innovative Neurotechnologies) initiative now entering year two, this issue of Nature presents two landmark papers that mobilize 'big science' resources to the cause. Hongkui Zeng and colleagues present the first brain-wide, mesoscale connectome for a mammalian species — the laboratory mouse — based on cell-type-specific tracing of axonal projections. The wiring diagram of a complete nervous system has long been available for a small roundworm, but neuronal connectivity data for larger animals has been patchy until now. The new three-dimensional Allen Mouse Brain Connectivity Atlas is a whole-brain connectivity matrix that will provide insights into how brain regions communicate. Much of the data generated in this project will be of relevance to investigations of neural networks in humans and should help to further our understanding of human brain connectivity and its involvement in brain disorders. In a separate report Ed Lein and colleagues present a transcriptional atlas of the mid-gestational human brain at high spatial resolution, based on laser microdissection and DNA microarray technology. The structure and function of the human brain is largely determined by prenatal transcriptional processes that initiate gene expression, but our understanding of the developing brain has been limited. The new data set reveals transcriptional signatures for developmental processes associated with the massive expansion of neocortex during human evolution, and suggests new cortical germinal zones or postmitotic neurons as sites of dynamic expression for many genes associated with neurological or psychiatric disorders.
A large-scale standardized physiological survey reveals functional organization of the mouse visual cortex
To understand how the brain processes sensory information to guide behavior, we must know how stimulus representations are transformed throughout the visual cortex. Here we report an open, large-scale physiological survey of activity in the awake mouse visual cortex: the Allen Brain Observatory Visual Coding dataset. This publicly available dataset includes the cortical activity of nearly 60,000 neurons from six visual areas, four layers, and 12 transgenic mouse lines in a total of 243 adult mice, in response to a systematic set of visual stimuli. We classify neurons on the basis of joint reliabilities to multiple stimuli and validate this functional classification with models of visual responses. While most classes are characterized by responses to specific subsets of the stimuli, the largest class is not reliably responsive to any of the stimuli and becomes progressively larger in higher visual areas. These classes reveal a functional organization wherein putative dorsal areas show specialization for visual motion signals.
A Different Path
The global water crisis is predicted to kill 34 to 76 million people by 2020. Large- scale infrastructure projects can provide water, but construction of these projects has not proven adequate to meet growing populations and, even where feasible, large-scale projects have significant social, economic and environmental impacts. A different path to solving the global water crisis that emphasizes efficiency and sustainable, community- scale projects in addition to centralized infrastructure, has been mapped by a range of scholars and activists. Small scale rainwater harvesting is one sustainable approach that is proving increasingly effective in both rural and urban settings in the developing world. This paper surveys the use of rainwater harvesting in India and draws some lessons for the application of this approach to other regions.