Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
32
result(s) for
"Caine, Elizabeth A."
Sort by:
Characterization of Lethal Zika Virus Infection in AG129 Mice
2016
Mosquito-borne Zika virus (ZIKV) typically causes a mild and self-limiting illness known as Zika fever, which often is accompanied by maculopapular rash, headache, and myalgia. During the current outbreak in South America, ZIKV infection during pregnancy has been hypothesized to cause microcephaly and other diseases. The detection of ZIKV in fetal brain tissue supports this hypothesis. Because human infections with ZIKV historically have remained sporadic and, until recently, have been limited to small-scale epidemics, neither the disease caused by ZIKV nor the molecular determinants of virulence and/or pathogenicity have been well characterized. Here, we describe a small animal model for wild-type ZIKV of the Asian lineage.
Using mice deficient in interferon α/β and Ɣ receptors (AG129 mice), we report that these animals were highly susceptible to ZIKV infection and disease, succumbing within seven to eight days. Rapid viremic dissemination was observed in visceral organs and brain; but only was associated with severe pathologies in the brain and muscle. Finally, these results were consistent across challenge routes, age of mice, and inoculum doses. These data represent a mouse model for ZIKV that is not dependent on adapting ZIKV to intracerebral passage in mice.
Foot pad injection of AG129 mice with ZIKV represents a biologically relevant model for studying ZIKV infection and disease development following wild-type virus inoculation without the requirement for adaptation of the virus or intracerebral delivery of the virus. This newly developed Zika disease model can be exploited to identify determinants of ZIKV virulence and reveal molecular mechanisms that control the virus-host interaction, providing a framework for rational design of acute phase therapeutics and for vaccine efficacy testing.
Journal Article
Interferon lambda protects the female reproductive tract against Zika virus infection
2019
Although Zika virus (ZIKV) can be transmitted sexually and cause congenital birth defects, immune control mechanisms in the female reproductive tract (FRT) are not well characterized. Here we show that treatment of primary human vaginal and cervical epithelial cells with interferon (IFN)-α/β or IFN-λ induces host defense transcriptional signatures and inhibits ZIKV infection. We also assess the effects of IFNs on intravaginal infection of the FRT using ovariectomized mice treated with reproductive hormones. We find that mice receiving estradiol are protected against intravaginal ZIKV infection, independently of IFN-α/β or IFN-λ signaling. In contrast, mice lacking IFN-λ signaling sustain greater FRT infection when progesterone is administered. Exogenous IFN-λ treatment confers an antiviral effect when mice receive both estradiol and progesterone, but not progesterone alone. Our results identify a hormonal stage-dependent role for IFN-λ in controlling ZIKV infection in the FRT and suggest a path for minimizing sexual transmission of ZIKV in women.
Zika virus infections can cause devastating congenital birth defects but the underlying interactions with the host immune system are not well understood. Here, the authors examine the immune basis of vaginal protection and susceptibility to Zika viral infection, and identify a hormonal dependent role for interferon-lambda-mediated protection against disease.
Journal Article
Animal Models of Zika Virus Infection during Pregnancy
by
Diamond, Michael S.
,
Caine, Elizabeth A.
,
Jagger, Brett W.
in
Amniotic fluid
,
Animal models
,
Antibodies
2018
Zika virus (ZIKV) emerged suddenly in the Americas in 2015 and was associated with a widespread outbreak of microcephaly and other severe congenital abnormalities in infants born to mothers infected during pregnancy. Vertical transmission of ZIKV in humans was confirmed when viral RNA was detected in fetal and placental tissues, and this outcome has been recapitulated experimentally in animals. Unlike other flaviviruses, ZIKV is both arthropod- and sexually-transmitted, and has a broad tissue tropism in humans, including multiple tissues of the reproductive tract. The threats posed by ZIKV have prompted the development of multiple in vivo models to better understand the pathogenesis of ZIKV, particularly during pregnancy. Here, we review the progress on animal models of ZIKV infection during pregnancy. These studies have generated a foundation of insights into the biology of ZIKV, and provide a means for evaluating vaccines and therapeutics.
Journal Article
Adaptation of Enterovirus 71 to Adult Interferon Deficient Mice
by
Partidos, Charalambos D.
,
Caine, Elizabeth A.
,
Santangelo, Joseph D.
in
Adaptation
,
Alum
,
Aluminum sulfate
2013
Non-polio enteroviruses, including enterovirus 71 (EV71), have caused severe and fatal cases of hand, foot and mouth disease (HFMD) in the Asia-Pacific region. The development of a vaccine or antiviral against these pathogens has been hampered by the lack of a reliable small animal model. In this study, a mouse adapted EV71 strain was produced by conducting serial passages through A129 (α/β interferon (IFN) receptor deficient) and AG129 (α/β, γ IFN receptor deficient) mice. A B2 sub genotype of EV71 was inoculated intraperitoneally (i.p.) into neonatal AG129 mice and brain-harvested virus was subsequently passaged through 12 and 15 day-old A129 mice. When tested in 10 week-old AG129 mice, this adapted strain produced 100% lethality with clinical signs including limb paralysis, eye irritation, loss of balance, and death. This virus caused only 17% mortality in same age A129 mice, confirming that in the absence of a functional IFN response, adult AG129 mice are susceptible to infection by adapted EV71 isolates. Subsequent studies in adult AG129 and young A129 mice with the adapted EV71 virus examined the efficacy of an inactivated EV71 candidate vaccine and determined the role of humoral immunity in protection. Passive transfer of rabbit immune sera raised against the EV71 vaccine provided protection in a dose dependent manner in 15 day-old A129 mice. Intramuscular injections (i.m.) in five week-old AG129 mice with the alum adjuvanted vaccine also provided protection against the mouse adapted homologous strain. No clinical signs of disease or mortality were observed in vaccinated animals, which received a prime-and-boost, whereas 71% of control animals were euthanized after exhibiting systemic clinical signs (P<0.05). The development of this animal model will facilitate studies on EV71 pathogenesis, antiviral testing, the evaluation of immunogenicity and efficacy of vaccine candidates, and has the potential to establish correlates of protection studies.
Journal Article
A Live-Cell NanoBRET Assay to Monitor RNA–Protein Interactions and Their Inhibition by Small Molecules
2025
RNA–protein interactions are critical for cellular processes, including translation, pre-mRNA splicing, post-transcriptional modifications, and RNA stability. Their dysregulation is implicated in diseases such as myotonic dystrophy type 1 (DM1) and amyotrophic lateral sclerosis (ALS). To investigate RNA–protein interactions, here is described a live-cell NanoBioluminescence Resonance Energy Transfer (NanoBRET) assay to study the interaction between expanded r(CUG) repeats [r(CUG)exp] and muscleblind-like 1 (MBNL1), central to DM1 pathogenesis. This r(CUG)exp sequesters MBNL1, a regulator of alternative pre-mRNA splicing, in nuclear foci causing splicing dysregulation. In the NanoBRET assay, r(CUG)exp acts as a scaffold to bring into proximity a BRET pair, MBNL1–NanoLuciferase (NanoLuc) and MBNL1–HaloTag, enabling a quantitative readout of RNA–protein interactions. Following assay optimization, an RNA-focused small molecule library was screened, identifying ten compounds with shared chemotypes that disrupt the r(CUG)exp–MBNL1 complex. Nuclear magnetic resonance (NMR) studies revealed these inhibitors bind to the 1 × 1 UU internal loops formed when r(CUG)exp folds. Five of these molecules rescued two cellular hallmarks of DM1 in patient-derived myotubes, alternative pre-mRNA splicing defects and formation of nuclear r(CUG)/MBNL1-positive foci. These results demonstrate that the NanoBRET assay is a powerful tool to study RNA–protein interactions in live cells and to identify small molecules that alleviate RNA-mediated cellular pathology.
Journal Article
Efficacy of a Trivalent Hand, Foot, and Mouth Disease Vaccine against Enterovirus 71 and Coxsackieviruses A16 and A6 in Mice
by
Osorio, Jorge
,
Caine, Elizabeth
,
Fuchs, Jeremy
in
Adaptation
,
Adaptation, Biological
,
AG129 mice
2015
Hand, foot, and mouth disease (HFMD) has recently emerged as a major public health concern across the Asian-Pacific region. Enterovirus 71 (EV71) and Coxsackievirus A16 (CVA16) are the primary causative agents of HFMD, but other members of the Enterovirus A species, including Coxsackievirus A6 (CVA6), can cause disease. The lack of small animal models for these viruses have hampered the development of a licensed HFMD vaccine or antivirals. We have previously reported on the development of a mouse model for EV71 and demonstrated the protective efficacy of an inactivated EV71 vaccine candidate. Here, mouse-adapted strains of CVA16 and CVA6 were produced by sequential passage of the viruses through mice deficient in interferon (IFN) α/β (A129) and α/β and γ (AG129) receptors. Adapted viruses were capable of infecting 3 week-old A129 (CVA6) and 12 week-old AG129 (CVA16) mice. Accordingly, these models were used in active and passive immunization studies to test the efficacy of a trivalent vaccine candidate containing inactivated EV71, CVA16, and CVA6. Full protection from lethal challenge against EV71 and CVA16 was observed in trivalent vaccinated groups. In contrast, monovalent vaccinated groups with non-homologous challenges failed to cross protect. Protection from CVA6 challenge was accomplished through a passive transfer study involving serum raised against the trivalent vaccine. These animal models will be useful for future studies on HFMD related pathogenesis and the efficacy of vaccine candidates.
Journal Article
Zika virus infection damages the testes in mice
by
Caine, Elizabeth A.
,
Fernandez, Estefania
,
Gorman, Matthew J.
in
631/326/596/2555
,
631/326/596/2557
,
692/420/254
2016
Infection of male mice with Zika virus caused testicular and epididymal damage, reduction in sex hormone levels, destruction of germ and somatic cells in the testis, loss of mature sperm and reduction in fertility.
Zika virus damages testes in mice
Using a mouse-adapted strain of Zika virus, Michael Diamond and colleagues show that Zika virus infection of mice causes injury to the testes, resulting in diminished testosterone and oligospermia. They show that the virus preferentially infects spermatogonia, spermatocytes and Sertoli cells in the testis and causes the destruction of the seminiferous tubules. Longitudinal studies of sperm function and viability in of Zika virus infected humans are needed before the extent to which these observations translate to humans is clear.
Infection of pregnant women with Zika virus (ZIKV) can cause congenital malformations including microcephaly, which has focused global attention on this emerging pathogen
1
. In addition to transmission by mosquitoes, ZIKV can be detected in the seminal fluid of affected males for extended periods of time and transmitted sexually
2
. Here, using a mouse-adapted African ZIKV strain (Dakar 41519), we evaluated the consequences of infection in the male reproductive tract of mice. We observed persistence of ZIKV, but not the closely related dengue virus (DENV), in the testis and epididymis of male mice, and this was associated with tissue injury that caused diminished testosterone and inhibin B levels and oligospermia. ZIKV preferentially infected spermatogonia, primary spermatocytes and Sertoli cells in the testis, resulting in cell death and destruction of the seminiferous tubules. Less damage was caused by a contemporary Asian ZIKV strain (H/PF/2013), in part because this virus replicates less efficiently in mice. The extent to which these observations in mice translate to humans remains unclear, but longitudinal studies of sperm function and viability in ZIKV-infected humans seem warranted.
Journal Article
Correction: Characterization of Lethal Zika Virus Infection in AG129 Mice
2016
[This corrects the article DOI: 10.1371/journal.pntd.0004682.].
Journal Article
Zika Virus Causes Acute Infection and Inflammation in the Ovary of Mice Without Apparent Defects in Fertility
2019
Abstract
Background
Zika virus (ZIKV) has become a global concern because infection of pregnant mothers was linked to congenital birth defects. Zika virus is unique from other flaviviruses, because it is transmitted vertically and sexually in addition to by mosquito vectors. Prior studies in mice, nonhuman primates, and humans have shown that ZIKV targets the testis in males, resulting in persistent infection and oligospermia. However, its effects on the corresponding female gonads have not been evaluated.
Methods
In this study, we assessed the effects of ZIKV on the ovary in nonpregnant mice.
Results
During the acute phase, ZIKV productively infected the ovary causing accumulation of CD4+ and virus-specific CD8+ T cells. T cells protected against ZIKV infection in the ovary, as higher viral burden was measured in CD8−/− and TCRβδ−/− mice. Increased cell death and tissue inflammation in the ovary was observed during the acute phase of infection, but this normalized over time.
Conclusions
In contrast to that observed with males, minimal persistence and no long-term consequences of ZIKV infection on ovarian follicular reserve or fertility were demonstrated in this model. Thus, although ZIKV replicates in cells of the ovary and causes acute oophoritis, there is rapid resolution and no long-term effects on fertility, at least in mice.
Although ZIKV can be transmitted sexually and target the testis in males for chronic infection, its effects on the female gonads have not been studied. We evaluated the short- and long-term effects of ZIKV infection in the ovaries of mice.
Journal Article
Chloroquine, an Endocytosis Blocking Agent, Inhibits Zika Virus Infection in Different Cell Models
by
Loiola, Erick
,
O’Connor, David
,
Higa, Luiza
in
Animals
,
antiviral
,
Antiviral Agents - pharmacology
2016
Zika virus (ZIKV) infection in utero might lead to microcephaly and other congenital defects. Since no specific therapy is available thus far, there is an urgent need for the discovery of agents capable of inhibiting its viral replication and deleterious effects. Chloroquine is widely used as an antimalarial drug, anti-inflammatory agent, and it also shows antiviral activity against several viruses. Here we show that chloroquine exhibits antiviral activity against ZIKV in Vero cells, human brain microvascular endothelial cells, human neural stem cells, and mouse neurospheres. We demonstrate that chloroquine reduces the number of ZIKV-infected cells in vitro, and inhibits virus production and cell death promoted by ZIKV infection without cytotoxic effects. In addition, chloroquine treatment partially reveres morphological changes induced by ZIKV infection in mouse neurospheres.
Journal Article