Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
108 result(s) for "Calabrese, Diego"
Sort by:
The RSPO–LGR4/5–ZNRF3/RNF43 module controls liver zonation and size
LGR4/5 receptors and their cognate RSPO ligands potentiate Wnt/β-catenin signalling and promote proliferation and tissue homeostasis in epithelial stem cell compartments. In the liver, metabolic zonation requires a Wnt/β-catenin signalling gradient, but the instructive mechanism controlling its spatiotemporal regulation is not known. We have now identified the RSPO–LGR4/5–ZNRF3/RNF43 module as a master regulator of Wnt/β-catenin-mediated metabolic liver zonation. Liver-specific LGR4/5 loss of function (LOF) or RSPO blockade disrupted hepatic Wnt/β-catenin signalling and zonation. Conversely, pathway activation in ZNRF3/RNF43 LOF mice or with recombinant RSPO1 protein expanded the hepatic Wnt/β-catenin signalling gradient in a reversible and LGR4/5-dependent manner. Recombinant RSPO1 protein increased liver size and improved liver regeneration, whereas LGR4/5 LOF caused the opposite effects, resulting in hypoplastic livers. Furthermore, we show that LGR4 + hepatocytes throughout the lobule contribute to liver homeostasis without zonal dominance. Taken together, our results indicate that the RSPO–LGR4/5–ZNRF3/RNF43 module controls metabolic liver zonation and is a hepatic growth/size rheostat during development, homeostasis and regeneration. Tchorz and colleagues identify a role for the RSPO–LGR4/5–ZNRF3/RNF43 module as master regulator of Wnt/β-catenin-mediated metabolic liver zonation and hepatic growth/size control during development, homeostasis and regeneration.
Variable Structure Control of a Small Ducted Wind Turbine in the Whole Wind Speed Range Using a Luenberger Observer
This paper proposes a new variable structure control scheme for a variable-speed, fixed-pitch ducted wind turbine, equipped with an annular, brushless permanent-magnet synchronous generator, considering a back-to-back power converter topology. The purpose of this control scheme is to maximise the aerodynamic power over the entire wind speed range, considering the mechanical safety limits of the ducted wind turbine. The ideal power characteristics are achieved with the design of control laws aimed at performing the maximum power point tracking control in the low wind speeds region, and the constant speed, power, and torque control in the high wind speed region. The designed control laws utilize a Luenberger observer for the estimation of the aerodynamic torque and a shallow neural network for wind speed estimation. The effectiveness of the proposed method was verified through tests in a laboratory setup. Moreover, a comparison with other solutions from the literature allowed us to better evaluate the performances achieved and to highlight the originality of the proposed control scheme.
Collagen-rich omentum is a premetastatic niche for integrin α2-mediated peritoneal metastasis
The extracellular matrix (ECM) plays critical roles in tumor progression and metastasis. However, the contribution of ECM proteins to early metastatic onset in the peritoneal cavity remains unexplored. Here, we suggest a new route of metastasis through the interaction of integrin alpha 2 (ITGA2) with collagens enriched in the tumor coinciding with poor outcome in patients with ovarian cancer. Using multiple gene-edited cell lines and patient-derived samples, we demonstrate that ITGA2 triggers cancer cell adhesion to collagen, promotes cell migration, anoikis resistance, mesothelial clearance, and peritoneal metastasis in vitro and in vivo. Mechanistically, phosphoproteomics identify an ITGA2-dependent phosphorylation of focal adhesion kinase and mitogen-activated protein kinase pathway leading to enhanced oncogenic properties. Consequently, specific inhibition of ITGA2-mediated cancer cell-collagen interaction or targeting focal adhesion signaling may present an opportunity for therapeutic intervention of metastatic spread in ovarian cancer.
miR-135a-5p-mediated downregulation of protein tyrosine phosphatase receptor delta is a candidate driver of HCV-associated hepatocarcinogenesis
Background and aimsHCV infection is a leading risk factor of hepatocellular carcinoma (HCC). However, even after viral clearance, HCC risk remains elevated. HCV perturbs host cell signalling to maintain infection, and derailed signalling circuitry is a key driver of carcinogenesis. Since protein phosphatases are regulators of signalling events, we aimed to identify phosphatases that respond to HCV infection with relevance for hepatocarcinogenesis.MethodsWe assessed mRNA and microRNA (miRNA) expression profiles in primary human hepatocytes, liver biopsies and resections of patients with HCC, and analysed microarray and RNA-seq data from paired liver biopsies of patients with HCC. We revealed changes in transcriptional networks through gene set enrichment analysis and correlated phosphatase expression levels to patient survival and tumour recurrence.ResultsWe demonstrate that tumour suppressor protein tyrosine phosphatase receptor delta (PTPRD) is impaired by HCV infection in vivo and in HCC lesions of paired liver biopsies independent from tissue inflammation or fibrosis. In liver tissue adjacent to tumour, high PTPRD levels are associated with a dampened transcriptional activity of STAT3, an increase of patient survival from HCC and reduced tumour recurrence after surgical resection. We identified miR-135a-5p as a mechanistic regulator of hepatic PTPRD expression in patients with HCV.ConclusionsWe previously demonstrated that STAT3 is required for HCV infection. We conclude that HCV promotes a STAT3 transcriptional programme in the liver of patients by suppressing its regulator PTPRD via upregulation of miR-135a-5p. Our results show the existence of a perturbed PTPRD–STAT3 axis potentially driving malignant progression of HCV-associated liver disease.
Suppression of the Nrf2-Dependent Antioxidant Response by Glucocorticoids and 11β-HSD1-Mediated Glucocorticoid Activation in Hepatic Cells
Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) is a key transcription factor regulating a plethora of detoxifying enzymes and antioxidant genes involved in drug metabolism and defence against oxidative stress. The glucocorticoid receptor (GR) is a ligand-induced transcription factor involved in the regulation of energy supply for metabolic needs to cope with various stressors. GR activity is controlled by glucocorticoids, which are synthesized in the adrenal glands and regenerated mainly in the liver from inactive cortisone by 11β-hydroxysteroid dehydrogenase-1 (11β-HSD1). Using transfected HEK-293 cells and hepatic H4IIE cells we show that glucocorticoids, activated by 11β-HSD1 and acting through GR, suppress the Nrf2-dependent antioxidant response. The expression of the marker genes NQO1, HMOX1 and GST2A was suppressed upon treatment of 11β-HSD1 expressing cells with cortisone, an effect that was reversed by 11β-HSD1 inhibitors. Furthermore, our results demonstrate that elevated glucocorticoids lowered the ability of cells to detoxify H(2)O(2). Moreover, a comparison of gene expression in male and female rats revealed an opposite sexual dimorphism with an inverse relationship between 11β-HSD1 and Nrf2 target gene expression. The results demonstrate a suppression of the cellular antioxidant defence capacity by glucocorticoids and suggest that elevated 11β-HSD1 activity may lead to impaired Nrf2-dependent antioxidant response. The gender-specific differences in hepatic expression levels of 11β-HSD1 and Nrf2 target genes and the impact of pharmacological inhibition of 11β-HSD1 on improving cellular capacity to cope with oxidative stress warrants further studies in vivo.
Imatinib reduces non-alcoholic fatty liver disease in obese mice by targeting inflammatory and lipogenic pathways in macrophages and liver
Macrophages have been recognized as key players in non-alcoholic fatty liver disease (NAFLD). Our aim was to assess whether pharmacological attenuation of macrophages can be achieved by imatinib, an anti-leukemia drug with known anti-inflammatory and anti-diabetic properties, and how this impacts on NAFLD. We analyzed the pro- and anti-inflammatory gene expression of murine macrophages and human monocytes in vitro in the presence or absence of imatinib. In a time-resolved study, we characterized metabolic disease manifestations such as hepatic steatosis, systemic and adipose tissue inflammation as well as lipid and glucose metabolism in obese mice at one and three months of imatinib treatment. Our results showed that imatinib lowered pro-inflammatory markers in murine macrophages and human monocytes in vitro . In obese mice, imatinib reduced TNFα-gene expression in peritoneal and liver macrophages and systemic lipid levels at one month. This was followed by decreased hepatic steatosis, systemic and adipose tissue inflammation and increased insulin sensitivity after three months. As the transcription factor sterol regulatory element-binding protein (SREBP) links lipid metabolism to the innate immune response, we assessed the gene expression of SREBPs and their target genes, which was indeed downregulated in the liver and partially in peritoneal macrophages. In conclusion, targeting both inflammatory and lipogenic pathways in macrophages and liver as shown by imatinib could represent an attractive novel therapeutic strategy for patients with NAFLD.
Liver biopsy derived induced pluripotent stem cells provide unlimited supply for the generation of hepatocyte-like cells
Hepatocyte-like cells (HLCs) differentiated from induced pluripotent stem cells (iPSCs) have emerged as a promising cell culture model to study metabolism, biotransformation, viral infections and inherited liver diseases. iPSCs provide an unlimited supply for the generation of HLCs, but incomplete HLC differentiation remains a major challenge. iPSC may carry-on a tissue of origin dependent expression memory influencing iPSC differentiation into different cell types. Whether liver derived iPSCs (Li-iPSCs) would allow the generation of more fully differentiated HLCs is not known. In the current study, we used primary liver cells (PLCs) expanded from liver needle biopsies and reprogrammed them into Li-iPSCs using a non-integrative Sendai virus-based system. Li-iPSCs were differentiated into HLCs using established differentiation protocols. The HLC phenotype was characterized at the protein, functional and transcriptional level. RNA sequencing data were generated from the originating liver biopsies, the Li-iPSCs, fibroblast derived iPSCs, and differentiated HLCs, and used to characterize and compare their transcriptome profiles. Li-iPSCs indeed retain a liver specific transcriptional footprint. Li-iPSCs can be propagated to provide an unlimited supply of cells for differentiation into Li-HLCs. Similar to HLCs derived from fibroblasts, Li-HLCs could not be fully differentiated into hepatocytes. Relative to the originating liver, Li-HLCs showed lower expression of liver specific transcription factors and increased expression of genes involved in the differentiation of other tissues. PLCs and Li-iPSCs obtained from small pieces of human needle liver biopsies constitute a novel unlimited source for the production of HLCs. Despite the preservation of a liver specific gene expression footprint in Li-iPSCs, the generation of fully differentiated hepatocytes cannot be achieved with the current differentiation protocols.
VEGF dose regulates vascular stabilization through Semaphorin3A and the Neuropilin‐1+ monocyte/TGF‐β1 paracrine axis
VEGF is widely investigated for therapeutic angiogenesis, but while short‐term delivery is desirable for safety, it is insufficient for new vessel persistence, jeopardizing efficacy. Here, we investigated whether and how VEGF dose regulates nascent vessel stabilization, to identify novel therapeutic targets. Monoclonal populations of transduced myoblasts were used to homogeneously express specific VEGF doses in SCID mouse muscles. VEGF was abrogated after 10 and 17 days by Aflibercept treatment. Vascular stabilization was fastest with low VEGF, but delayed or prevented by higher doses, without affecting pericyte coverage. Rather, VEGF dose‐dependently inhibited endothelial Semaphorin3A expression, thereby impairing recruitment of Neuropilin‐1‐expressing monocytes (NEM), TGF‐β1 production and endothelial SMAD2/3 activation. TGF‐β1 further initiated a feedback loop stimulating endothelial Semaphorin3A expression, thereby amplifying the stabilizing signals. Blocking experiments showed that NEM recruitment required endogenous Semaphorin3A and that TGF‐β1 was necessary to start the Semaphorin3A/NEM axis. Conversely, Semaphorin3A treatment promoted NEM recruitment and vessel stabilization despite high VEGF doses or transient adenoviral delivery. Therefore, VEGF inhibits the endothelial Semaphorin3A/NEM/TGF‐β1 paracrine axis and Semaphorin3A treatment accelerates stabilization of VEGF‐induced angiogenesis. Synopsis VEGF impairs newly induced vessel stabilization by inhibiting endothelial Semaphorin3A (Sema3A) expression and recruitment of Neuropilin1‐expressing monocytes (NEM). Sema3A can accelerate vascular stabilization despite acute VEGF delivery. The Neuropilin‐1 ligand Sema3A is required for recruitment of NEM, which promote the acquisition of VEGF‐independence by secreting TGF‐β1 and activating endothelial SMAD2/3 signaling. The stabilizing signals are amplified and maintained by a novel positive feedback loop, whereby TGF‐β1, produced by Sema3A‐recruited NEM, stimulates further Sema3A secretion by the endothelium. Sema3A production in vivo requires TGF‐β1, whereas VEGF directly and dose‐dependently inhibits Sema3A expression by activated endothelium. Treatment with recombinant Sema3A rescues vascular stabilization impaired by high VEGF doses and prevents regression of newly induced angiogenesis after transient VEGF delivery by adenoviral vectors. Graphical Abstract VEGF impairs newly induced vessel stabilization by inhibiting endothelial Semaphorin3A (Sema3A) expression and recruitment of Neuropilin1‐expressing monocytes (NEM). Sema3A can accelerate vascular stabilization despite acute VEGF delivery.
Hepatocellular Carcinoma Xenografts Established From Needle Biopsies Preserve the Characteristics of the Originating Tumors
Hepatocellular carcinoma (HCC) is the second leading cause of cancer‐related deaths worldwide. Treatment options for patients with advanced‐stage disease are limited. A major obstacle in drug development is the lack of an in vivo model that accurately reflects the broad spectrum of human HCC. Patient‐derived xenograft (PDX) tumor mouse models could overcome the limitations of cancer cell lines. PDX tumors maintain the genetic and histologic heterogeneity of the originating tumors and are used for preclinical drug development in various cancers. Controversy exists about their genetic and molecular stability through serial passaging in mice. We aimed to establish PDX models from human HCC biopsies and to characterize their histologic and molecular stability during serial passaging. A total of 54 human HCC needle biopsies that were derived from patients with various underlying liver diseases and tumor stages were transplanted subcutaneously into immunodeficient, nonobese, diabetic/severe combined immunodeficiency gamma‐c mice; 11 successfully engrafted. All successfully transplanted HCCs were Edmondson grade III or IV. HCC PDX tumors retained the histopathologic, transcriptomic, and genomic characteristics of the original HCC biopsies over 6 generations of retransplantation. These characteristics included Edmondson grade, expression of tumor markers, tumor gene signature, tumor‐associated mutations, and copy number alterations. Conclusion: PDX mouse models can be established from undifferentiated HCCs, with an overall success rate of approximately 20%. The transplanted tumors represent the entire spectrum of the molecular landscape of HCCs and preserve the characteristics of the originating tumors through serial passaging. HCC PDX models are a promising tool for preclinical personalized drug development.
miR‐579‐3p Controls Hepatocellular Carcinoma Formation by Regulating the Phosphoinositide 3‐Kinase–Protein Kinase B Pathway in Chronically Inflamed Liver
Chronic liver inflammation causes continuous liver damage with progressive liver fibrosis and cirrhosis, which may eventually lead to hepatocellular carcinoma (HCC). Whereas the 10‐year incidence for HCC in patients with cirrhosis is approximately 20%, many of these patients remain tumor free for their entire lives. Clarifying the mechanisms that define the various outcomes of chronic liver inflammation is a key aspect in HCC research. In addition to a wide variety of contributing factors, microRNAs (miRNAs) have also been shown to be engaged in promoting liver cancer. Therefore, we wanted to characterize miRNAs that are involved in the development of HCC, and we designed a longitudinal study with formalin‐fixed and paraffin‐embedded liver biopsy samples from several pathology institutes from Switzerland. We examined the miRNA expression by nCounterNanostring technology in matched nontumoral liver tissue from patients developing HCC (n = 23) before and after HCC formation in the same patient. Patients with cirrhosis (n = 26) remaining tumor free within a similar time frame served as a control cohort. Comparison of the two cohorts revealed that liver tissue from patients developing HCC displayed a down‐regulation of miR‐579‐3p as an early step in HCC development, which was further confirmed in a validation cohort. Correlation with messenger RNA expression profiles further revealed that miR‐579‐3p directly attenuated phosphatidylinositol‐4,5‐bisphosphate 3‐kinase catalytic subunit alpha (PIK3CA) expression and consequently protein kinase B (AKT) and phosphorylated AKT. In vitro experiments and the use of clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 technology confirmed that miR‐579‐3p controlled cell proliferation and cell migration of liver cancer cell lines. Conclusion: Liver tissues from patients developing HCC revealed changes in miRNA expression. miR‐579‐3p was identified as a novel tumor suppressor regulating phosphoinositide 3‐kinase–AKT signaling at the early stages of HCC development.