Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
2 result(s) for "Caliaro, M."
Sort by:
Zeitlin Truncation of a Shallow Water Quasi‐Geostrophic Model for Planetary Flow
In this work, we consider a Shallow‐Water Quasi Geostrophic equation on the sphere, as a model for global large‐scale atmospheric dynamics. This equation, previously studied by Verkley (2009, https://doi.org/10.1175/2008jas2837.1) and Schubert et al. (2009, https://doi.org/10.3894/james.2009.1.2), possesses a rich geometric structure, called Lie‐Poisson, and admits an infinite number of conserved quantities, called Casimirs. In this paper, we develop a Casimir preserving numerical method for long‐time simulations of this equation. The method develops in two steps: first, we construct an N‐dimensional Lie‐Poisson system that converges to the continuous one in the limit N → ∞; second, we integrate in time the finite‐dimensional system using an isospectral time integrator, developed by Modin and Viviani (2020, https://doi.org/10.1017/jfm.2019.944). We demonstrate the efficacy of this computational method by simulating a flow on the entire sphere for different values of the Lamb parameter. We particularly focus on rotation‐induced effects, such as the formation of jets. In agreement with shallow water models of the atmosphere, we observe the formation of robust latitudinal jets and a decrease in the zonal wind amplitude with latitude. Furthermore, spectra of the kinetic energy are computed as a point of reference for future studies. Plain Language Summary We conducted a study on a model that represents the movements of planetary flows. This model has important physical and mathematical properties that are related to its long‐term behavior, which is essential for understanding geophysical turbulence. In this work, we developed a numerical method for simulation that preserves the key mathematical structure of the model through a two‐step process. We applied our method to simulate global atmospheric flow and investigate the impact of varying strengths of planetary rotation. Our findings demonstrate the expected formation of wind patterns known as zonal jets, where stronger winds occur near the equator and weaker winds near the poles. We also present energy spectra that illustrate the influence of planetary rotation on the transfer of turbulent energy, which aligns with existing theoretical predictions found in literature. These results highlight the potential of our numerical method for studying fundamental problems in geophysical fluid dynamics. Key Points We develop a numerical method preserving Casimirs to simulate balanced shallow water flow on the sphere We perform global high‐resolution simulations while accurately accounting for latitude‐dependent effects Our simulations show the formation of robust zonal jets and provide key insights into quasi‐geostrophic turbulence
Multifactorial mechanism for the potentiation of cisplatin (CDDP) cytotoxicity by all-trans retinoic acid (ATRA) in human ovarian carcinoma cell lines
All-trans retinoic acid (ATRA) has been previously shown to inhibit the proliferation of some human ovarian carcinoma cell lines, and this inhibition was accompanied by cellular changes that were indicative of differentiation (Caliaro et al, 1994). In this work, a pretreatment of these adenocarcinoma cells with ATRA, for their respective doubling time, enhanced cisplatin (CDDP) cytotoxicity in the cell ines that were sensitive to its antiproliferative effect, but not in the ATRA-resistant ones. Results were assessed using median effect analysis in two ATRA-sensitive cell lines (OVCCR1 and NIHOVCAR3 cells) and in one ATRA-insensitive cell line (IGROV1 cells). Synergy between these two agents was observed only in cells sensitive to ATRA, regardless of their relative sensitivity to CDDP. Potential mechanisms for this synergy were investigated. ATRA did not increase the cellular platinum content, did not decrease the cellular glutathione and had no influence on the metallothionein IIA mRNA levels in NIHOVCAR3 cells. Moreover, the protein kinase C (PKC) activity was modulated by this differentiating agent in all cell lines tested, indicating that this activity was not directly involved in this potentiation. However, an ATRA inhibition of glutathione-S-transferase activity associated with an increase in the total DNA adducts formation could explain the potentiation of the CDDP cytotoxicity observed in NIHOVCAR3 cells. Finally, the ATRA modulation of the epidermal growth factor (EGF) receptor mRNA level could also be implicated in this synergy.