Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
56 result(s) for "Callaghan, Brian C."
Sort by:
Diabetic neuropathy: clinical manifestations and current treatments
Diabetic peripheral neuropathy is a prevalent, disabling disorder. The most common manifestation is distal symmetrical polyneuropathy (DSP), but many patterns of nerve injury can occur. Currently, the only effective treatments are glucose control and pain management. While glucose control substantially decreases the development of neuropathy in those with type 1 diabetes, the effect is probably much smaller in those with type 2 diabetes. Evidence supports the use of specific anticonvulsants and antidepressants for pain management in patients with diabetic peripheral neuropathy. However, the lack of disease-modifying therapies for diabetic DSP makes the identification of new modifiable risk factors essential. Growing evidence supports an association between components of the metabolic syndrome, including prediabetes, and neuropathy. Studies are needed to further explore this association, which has implications for the development of new treatments for this common disorder.
Neurological consequences of obesity
The high prevalence of obesity is associated with an enormous medical, social, and economic burden. The metabolic dysfunction, dyslipidaemia, and inflammation caused by obesity contribute to the development of a wide variety of disorders and effects on the nervous system. In the CNS, mild cognitive impairment can be attributed to obesity-induced alterations in hippocampal structure and function in some patients. Likewise, compromised hypothalamic function and subsequent defects in maintaining whole-body energy balance might be early events that contribute to weight gain and obesity development. In the peripheral nervous system, obesity-driven alterations in the autonomic nervous system prompt imbalances in sympathetic–parasympathetic activity, while alterations in the sensory–somatic nervous system underlie peripheral polyneuropathy, a common complication of diabetes. Pharmacotherapy and bariatric surgery are promising interventions for people with obesity that can improve neurological function. However, lifestyle interventions via dietary changes and exercise are the preferred approach to combat obesity and reduce its associated health risks.
Diabetic neuropathy: cellular mechanisms as therapeutic targets
Neuropathy is the most common complication of diabetes and considerably reduces patient quality of life, yet no disease-modifying therapies are currently available and symptomatic treatments generally provide only partial relief. Vincent and colleagues provide an update on the cellular mechanisms that lead to diabetic neuropathy, which involves a complex interplay between oxidative and inflammatory pathways in neurons, Schwann cells and the microvascular endothelium. The authors highlight potential new therapeutic targets and discuss drug candidates that are in development for this debilitating diabetic complication. In patients with diabetes, nerve injury is a common complication that leads to chronic pain, numbness and substantial loss of quality of life. Good glycemic control can decrease the incidence of diabetic neuropathy, but more than half of all patients with diabetes still develop this complication. There is no approved treatment to prevent or halt diabetic neuropathy, and only symptomatic pain therapies, with variable efficacy, are available. New insights into the mechanisms leading to the development of diabetic neuropathy continue to point to systemic and cellular imbalances in metabolites of glucose and lipids. In the PNS, sensory neurons, Schwann cells and the microvascular endothelium are vulnerable to oxidative and inflammatory stress in the presence of these altered metabolic substrates. This Review discusses the emerging cellular mechanisms that are activated in the diabetic milieu of hyperglycemia, dyslipidemia and impaired insulin signaling. We highlight the pathways to cellular injury, thereby identifying promising therapeutic targets, including mitochondrial function and inflammation. Key Points Multiple metabolic imbalances underlie the development of diabetic neuropathy Hyperglycemia, dyslipidemia and cardiovascular dysfunction are each independent risk factors for neuropathy Targeting risk factors as well as cellular oxidative stress and inflammation will be important in future treatment approaches Injury to neurons, Schwann cells and microvascular endothelial cells in the diabetic milieu contributes to the pathogenesis of neuropathy
The effect of surgical weight loss on diabetes complications in individuals with class II/III obesity
Aims/hypothesis The aim of this study was to determine the effect of bariatric surgery on diabetes complications in individuals with class II/III obesity (BMI > 35 kg/m 2 ). Methods We performed a prospective cohort study of participants with obesity who underwent bariatric surgery. At baseline and 2 years following surgery, participants underwent metabolic phenotyping and diabetes complication assessments. The primary outcomes for peripheral neuropathy (PN) were a change in intra-epidermal nerve fibre density (IENFD, units = fibres/mm) at the distal leg and proximal thigh, the primary outcome for cardiovascular autonomic neuropathy (CAN) was a change in the expiration/inspiration (E/I) ratio, and the primary outcome for retinopathy was a change in the mean deviation on frequency doubling technology testing. Results Among 127 baseline participants, 79 completed in-person follow-up (age 46.0 ± 11.3 years [mean ± SD], 73.4% female). Participants lost a mean of 31.0 kg (SD 18.4), and all metabolic risk factors improved except for BP and total cholesterol. Following bariatric surgery, one of the primary PN outcomes improved (IENFD proximal thigh, +3.4 ± 7.8, p <0.01), and CAN (E/I ratio −0.01 ± 0.1, p =0.89) and retinopathy (deviation −0.2 ± 3.0, p =0.52) were stable. Linear regression revealed that a greater reduction in fasting glucose was associated with improvements in retinopathy (mean deviation point estimate −0.7, 95% CI −1.3, −0.1). Conclusions/interpretation Bariatric surgery may be an effective approach to reverse PN in individuals with obesity. The observed stability of CAN and retinopathy may be an improvement compared with the natural progression of these conditions; however, controlled trials are needed. Graphical abstract
Environmental Risk Factors and Amyotrophic Lateral Sclerosis (ALS): A Case-Control Study of ALS in Michigan
An interim report of a case-control study was conducted to explore the role of environmental factors in the development of amyotrophic lateral sclerosis (ALS). Sixty-six cases and 66 age- and gender-matched controls were recruited. Detailed information regarding residence history, occupational history, smoking, physical activity, and other factors was obtained using questionnaires. The association of ALS with potential risk factors, including smoking, physical activity and chemical exposure, was investigated using conditional logistic regression models. As compared to controls, a greater number of our randomly selected ALS patients reported exposure to fertilizers to treat private yards and gardens and occupational exposure to pesticides in the last 30 years than our randomly selected control cases. Smoking, occupational exposures to metals, dust/fibers/fumes/gas and radiation, and physical activity were not associated with ALS when comparing the randomly selected ALS patients to the control subjects. To further explore and confirm results, exposures over several time frames, including 0-10 and 10-30 years earlier, were considered, and analyses were stratified by age and gender. Pesticide and fertilizer exposure were both significantly associated with ALS in the randomly selected ALS patients. While study results need to be interpreted cautiously given the small sample size and the lack of direct exposure measures, these results suggest that environmental and particularly residential exposure factors warrant close attention in studies examining risk factors of ALS.
Identification of Epigenetically Altered Genes in Sporadic Amyotrophic Lateral Sclerosis
Amyotrophic lateral sclerosis (ALS) is a terminal disease involving the progressive degeneration of motor neurons within the motor cortex, brainstem and spinal cord. Most cases are sporadic (sALS) with unknown causes suggesting that the etiology of sALS may not be limited to the genotype of patients, but may be influenced by exposure to environmental factors. Alterations in epigenetic modifications are likely to play a role in disease onset and progression in ALS, as aberrant epigenetic patterns may be acquired throughout life. The aim of this study was to identify epigenetic marks associated with sALS. We hypothesize that epigenetic modifications may alter the expression of pathogenesis-related genes leading to the onset and progression of sALS. Using ELISA assays, we observed alterations in global methylation (5 mC) and hydroxymethylation (5 HmC) in postmortem sALS spinal cord but not in whole blood. Loci-specific differentially methylated and expressed genes in sALS spinal cord were identified by genome-wide 5mC and expression profiling using high-throughput microarrays. Concordant direction, hyper- or hypo-5mC with parallel changes in gene expression (under- or over-expression), was observed in 112 genes highly associated with biological functions related to immune and inflammation response. Furthermore, literature-based analysis identified potential associations among the epigenes. Integration of methylomics and transcriptomics data successfully revealed methylation changes in sALS spinal cord. This study represents an initial identification of epigenetic regulatory mechanisms in sALS which may improve our understanding of sALS pathogenesis for the identification of biomarkers and new therapeutic targets.
Classification of painful or painless diabetic peripheral neuropathy and identification of the most powerful predictors using machine learning models in large cross-sectional cohorts
Background To improve the treatment of painful Diabetic Peripheral Neuropathy (DPN) and associated co-morbidities, a better understanding of the pathophysiology and risk factors for painful DPN is required. Using harmonised cohorts (N = 1230) we have built models that classify painful versus painless DPN using quality of life (EQ5D), lifestyle (smoking, alcohol consumption), demographics (age, gender), personality and psychology traits (anxiety, depression, personality traits), biochemical (HbA1c) and clinical variables (BMI, hospital stay and trauma at young age) as predictors. Methods The Random Forest, Adaptive Regression Splines and Naive Bayes machine learning models were trained for classifying painful/painless DPN. Their performance was estimated using cross-validation in large cross-sectional cohorts (N = 935) and externally validated in a large population-based cohort (N = 295). Variables were ranked for importance using model specific metrics and marginal effects of predictors were aggregated and assessed at the global level. Model selection was carried out using the Mathews Correlation Coefficient (MCC) and model performance was quantified in the validation set using MCC, the area under the precision/recall curve (AUPRC) and accuracy. Results Random Forest (MCC = 0.28, AUPRC = 0.76) and Adaptive Regression Splines (MCC = 0.29, AUPRC = 0.77) were the best performing models and showed the smallest reduction in performance between the training and validation dataset. EQ5D index, the 10-item personality dimensions, HbA1c, Depression and Anxiety t-scores, age and Body Mass Index were consistently amongst the most powerful predictors in classifying painful vs painless DPN. Conclusions Machine learning models trained on large cross-sectional cohorts were able to accurately classify painful or painless DPN on an independent population-based dataset. Painful DPN is associated with more depression, anxiety and certain personality traits. It is also associated with poorer self-reported quality of life, younger age, poor glucose control and high Body Mass Index (BMI). The models showed good performance in realistic conditions in the presence of missing values and noisy datasets. These models can be used either in the clinical context to assist patient stratification based on the risk of painful DPN or return broad risk categories based on user input. Model’s performance and calibration suggest that in both cases they could potentially improve diagnosis and outcomes by changing modifiable factors like BMI and HbA1c control and institute earlier preventive or supportive measures like psychological interventions.
Diabetic neuropathy: what does the future hold?
Frustratingly, disease-modifying treatments for diabetic neuropathy remain elusive. Glycaemic control has a robust effect on preventing neuropathy in individuals with type 1 but not in those with type 2 diabetes, which constitute the vast majority of patients. Encouragingly, recent evidence points to new metabolic risk factors and mechanisms, and thus also at novel disease-modifying strategies, which are desperately needed. Obesity has emerged as the second most important metabolic risk factor for neuropathy (diabetes being the first) from consensus findings of seven observational studies in populations across the world. Moreover, dyslipidaemia and altered sphingolipid metabolism are emergent novel mechanisms of nerve injury that may lead to new targeted therapies. Clinical history and examination remain critical components of an accurate diagnosis of neuropathy. However, skin biopsies and corneal confocal microscopy are promising newer tests that have been used as outcome measures in research studies but have not yet demonstrated clear clinical utility. Given the emergence of obesity as a neuropathy risk factor, exercise and weight loss are potential interventions to treat and/or prevent neuropathy, although evidence supporting exercise currently outweighs data supporting weight loss. Furthermore, a consensus has emerged advocating tricyclic antidepressants, serotonin–noradrenaline (norepinephrine) reuptake inhibitors and gabapentinoids for treating neuropathic pain. Out-of-pocket costs should be considered when prescribing these medications since their efficacy and tolerability are similar. Finally, the downsides of opioid treatment for chronic, non-cancer pain are becoming increasingly evident. Despite these data, current clinical practice frequently initiates and continues opioid prescriptions for patients with neuropathic pain before prescribing guideline-recommended treatments.
Towards prevention of diabetic peripheral neuropathy: clinical presentation, pathogenesis, and new treatments
Diabetic peripheral neuropathy (DPN) occurs in up to half of individuals with type 1 or type 2 diabetes. DPN results from the distal-to-proximal loss of peripheral nerve function, leading to physical disability and sometimes pain, with the consequent lowering of quality of life. Early diagnosis improves clinical outcomes, but many patients still develop neuropathy. Hyperglycaemia is a risk factor and glycaemic control prevents DPN development in type 1 diabetes. However, glycaemic control has modest or no benefit in individuals with type 2 diabetes, probably because they usually have comorbidities. Among them, the metabolic syndrome is a major risk factor for DPN. The pathophysiology of DPN is complex, but mechanisms converge on a unifying theme of bioenergetic failure in the peripheral nerves due to their unique anatomy. Current clinical management focuses on controlling diabetes, the metabolic syndrome, and pain, but remains suboptimal for most patients. Thus, research is ongoing to improve early diagnosis and prognosis, to identify molecular mechanisms that could lead to therapeutic targets, and to investigate lifestyle interventions to improve clinical outcomes.