Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
23
result(s) for
"Calvo-Álvarez, Estefania"
Sort by:
Appraisal of a Leishmania major Strain Stably Expressing mCherry Fluorescent Protein for Both In Vitro and In Vivo Studies of Potential Drugs and Vaccine against Cutaneous Leishmaniasis
by
Guerrero, Nestor Adrian
,
Calvo-Álvarez, Estefania
,
Prada, Christopher Fernández
in
Animals
,
Antiprotozoal Agents - administration & dosage
,
Antiprotozoal Agents - pharmacology
2012
Leishmania major cutaneous leishmaniasis is an infectious zoonotic disease. It is produced by a digenetic parasite, which resides in the phagolysosomal compartment of different mammalian macrophage populations. There is an urgent need to develop new therapies (drugs) against this neglected disease that hits developing countries. The main goal of this work is to establish an easier and cheaper tool of choice for real-time monitoring of the establishment and progression of this pathology either in BALB/c mice or in vitro assays. To validate this new technique we vaccinated mice with an attenuated Δhsp70-II strain of Leishmania to assess protection against this disease.
We engineered a transgenic L. major strain expressing the mCherry red-fluorescent protein for real-time monitoring of the parasitic load. This is achieved via measurement of fluorescence emission, allowing a weekly record of the footpads over eight weeks after the inoculation of BALB/c mice.
In vitro results show a linear correlation between the number of parasites and fluorescence emission over a range of four logs. The minimum number of parasites (amastigote isolated from lesion) detected by their fluorescent phenotype was 10,000. The effect of antileishmanial drugs against mCherry+L. major infecting peritoneal macrophages were evaluated by direct assay of fluorescence emission, with IC(50) values of 0.12, 0.56 and 9.20 µM for amphotericin B, miltefosine and paromomycin, respectively. An experimental vaccination trial based on the protection conferred by an attenuated Δhsp70-II mutant of Leishmania was used to validate the suitability of this technique in vivo.
A Leishmania major strain expressing mCherry red-fluorescent protein enables the monitoring of parasitic load via measurement of fluorescence emission. This approach allows a simpler, faster, non-invasive and cost-effective technique to assess the clinical progression of the infection after drug or vaccine therapy.
Journal Article
FLAgellum Member 8 modulates extravascular distribution of African trypanosomes
by
Sharma, Parul
,
Crouzols, Aline
,
Ngoune, Jean Marc Tsagmo
in
Analysis
,
Animals
,
Bioluminescence
2023
In the mammalian host, the biology of tissue-dwelling Trypanosoma brucei parasites is not completely understood, especially the mechanisms involved in their extravascular colonization. The trypanosome flagellum is an essential organelle in multiple aspects of the parasites’ development. The flagellar protein termed FLAgellar Member 8 (FLAM8) acts as a docking platform for a pool of cyclic AMP response protein 3 (CARP3) that is involved in signaling. FLAM8 exhibits a stage-specific distribution suggesting specific functions in the mammalian and vector stages of the parasite. Analyses of knockdown and knockout trypanosomes in their mammalian forms demonstrated that FLAM8 is not essential in vitro for survival, growth, motility and stumpy differentiation. Functional investigations in experimental infections showed that FLAM8 -deprived trypanosomes can establish and maintain an infection in the blood circulation and differentiate into insect transmissible forms. However, quantitative bioluminescence imaging and gene expression analysis revealed that FLAM8 -null parasites exhibit a significantly impaired dissemination in the extravascular compartment, that is restored by the addition of a single rescue copy of FLAM8 . In vitro trans-endothelial migration assays revealed significant defects in trypanosomes lacking FLAM8 . FLAM8 is the first flagellar component shown to modulate T . brucei distribution in the host tissues, possibly through sensing functions, contributing to the maintenance of extravascular parasite populations in mammalian anatomical niches, especially in the skin.
Journal Article
Free Radical Production Induced by Nitroimidazole Compounds Lead to Cell Death in Leishmania infantum Amastigotes
by
García-Fernández, Nerea
,
Balaña-Fouce, Rafael
,
Reguera-Torres, Rosa-María
in
Animals
,
Antiparasitic agents
,
Antiprotozoal Agents - chemistry
2024
Leishmania infantum is the vector-borne trypanosomatid parasite causing visceral leishmaniasis in the Mediterranean basin. This neglected tropical disease is treated with a limited number of obsolete drugs that are not exempt from adverse effects and whose overuse has promoted the emergence of resistant pathogens. In the search for novel antitrypanosomatid molecules that help overcome these drawbacks, drug repurposing has emerged as a good strategy. Nitroaromatic compounds have been found in drug discovery campaigns as promising antileishmanial molecules. Fexinidazole (recently introduced for the treatment of stages 1 and 2 of African trypanosomiasis), and pretomanid, which share the nitroimidazole nitroaromatic structure, have provided antileishmanial activity in different studies. In this work, we have tested the in vitro efficacy of these two nitroimidazoles to validate our 384-well high-throughput screening (HTS) platform consisting of L. infantum parasites emitting the near-infrared fluorescent protein (iRFP) as a biomarker of cell viability. These molecules showed good efficacy in both axenic and intramacrophage amastigotes and were poorly cytotoxic in RAW 264.7 and HepG2 cultures. Fexinidazole and pretomanid induced the production of ROS in axenic amastigotes but were not able to inhibit trypanothione reductase (TryR), thus suggesting that these compounds may target thiol metabolism through a different mechanism of action.
Journal Article
A multi-adenylate cyclase regulator at the flagellar tip controls African trypanosome transmission
2022
Signaling from ciliary microdomains controls developmental processes in metazoans. Trypanosome transmission requires development and migration in the tsetse vector alimentary tract. Flagellar cAMP signaling has been linked to parasite social motility (SoMo) in vitro, yet uncovering control of directed migration in fly organs is challenging. Here we show that the composition of an adenylate cyclase (AC) complex in the flagellar tip microdomain is essential for tsetse salivary gland (SG) colonization and SoMo. Cyclic AMP response protein 3 (CARP3) binds and regulates multiple AC isoforms. CARP3 tip localization depends on the cytoskeletal protein FLAM8. Re-localization of CARP3 away from the tip microdomain is sufficient to abolish SoMo and fly SG colonization. Since intrinsic development is normal in
carp3
and
flam8
knock-out parasites, AC complex-mediated tip signaling specifically controls parasite migration and thereby transmission. Participation of several developmentally regulated receptor-type AC isoforms may indicate the complexity of the in vivo signals perceived.
Trypanosomes can sense signal molecules and coordinate their movement in response to such signals, a phenomenon termed social motility (SoMo). Here, Bachmaier et al show that cyclic AMP response protein 3 (CARP3) localization to the flagellar tip and its interaction with a number of different adenylate cyclases is essential for migration to tsetse fly salivary glands and for SoMo, therewith linking SoMo and cAMP signaling to trypanosome transmission.
Journal Article
Infrared Fluorescent Imaging as a Potent Tool for In Vitro, Ex Vivo and In Vivo Models of Visceral Leishmaniasis
by
Balaña-Fouce, Rafael
,
Reguera, Rosa M.
,
Stamatakis, Kostantinos
in
Animals
,
Diagnosis
,
Disease Models, Animal
2015
Visceral leishmaniasis (VL) is hypoendemic in the Mediterranean region, where it is caused by the protozoan Leishmania infantum. An effective vaccine for humans is not yet available and the severe side-effects of the drugs in clinical use, linked to the parenteral administration route of most of them, are significant concerns of the current leishmanicidal medicines. New drugs are desperately needed to treat VL and phenotype-based High Throughput Screenings (HTS) appear to be suitable to achieve this goal in the coming years.
We generated two infrared fluorescent L. infantum strains, which stably overexpress the IFP 1.4 and iRFP reporter genes and performed comparative studies of their biophotonic properties at both promastigote and amastigote stages. To improve the fluorescence emission of the selected reporter in intracellular amastigotes, we engineered distinct constructs by introducing regulatory sequences of differentially-expressed genes (A2, AMASTIN and HSP70 II). The final strain that carries the iRFP gene under the control of the L. infantum HSP70 II downstream region (DSR), was employed to perform a phenotypic screening of a collection of small molecules by using ex vivo splenocytes from infrared-infected BALB/c mice. In order to further investigate the usefulness of this infrared strain, we monitored an in vivo infection by imaging BALB/c mice in a time-course study of 20 weeks.
The near-infrared fluorescent L. infantum strain represents an important step forward in bioimaging research of VL, providing a robust model of phenotypic screening suitable for HTS of small molecule collections in the mammalian parasite stage. Additionally, HSP70 II+L. infantum strain permitted for the first time to monitor an in vivo infection of VL. This finding accelerates the possibility of testing new drugs in preclinical in vivo studies, thus supporting the urgent and challenging drug discovery program against this parasitic disease.
Journal Article
Immune subversion by Leishmania infantum parasites suppresses NLRP3-driven inflammatory responses in amyloid-β-activated microglia
by
Saresella, Marina
,
Dolci, Maria
,
Vegeto, Elisabetta
in
Alzheimer's disease
,
Amyloid beta-Peptides - toxicity
,
Amyloid-β
2025
Chronic activation of innate immune responses in the brain is increasingly recognized as a contributor to neurodegenerative diseases, including Alzheimer's disease (AD). AD remains a major global health challenge due to the inefficacy of current therapies to modify disease progression. In AD, hyperactivated microglia, the brain’s resident macrophages, play a central role by responding to amyloid-beta peptides (Aβ) through activation of the NLRP3 inflammasome, a key innate immune sensor and a promising therapeutic target.
Leishmania infantum
, a protozoan parasite causing visceral leishmaniasis, is known to employ sophisticated mechanisms to subvert inflammatory responses in macrophages, including modulation of the NLRP3 inflammasome, thus representing a potential natural model for counteracting microglia-related inflammation. However, microglia-
Leishmania
interactions remain unexplored, particularly the parasite’s ability to modulate microglial NLRP3 activation. Here, we demonstrate that
L. infantum
invades and persists in microglia without inducing cell activation, indicating an immunologically silent entry. Aβ-stimulated NLRP3 activation was suppressed by
Leishmania
infection, as evidenced by a significant reduction in key pro-inflammatory mediators, including IL-1β, IL-18, TNF-α, and neurotoxic nitric oxide. Mechanistically,
L. infantum
disrupted NLRP3 priming by interfering with NF-κB signaling and upregulating the negative regulator A20. Additionally,
L. infantum
limited ASC speck formation, caspase-1 activation and ROS production while preserving lysosomal integrity. These findings reveal, for the first time, an unrecognized inhibitory effect of
L. infantum
on the microglial NLRP3/NF-κB axis and provide mechanistic insights into the parasite’s immune subversion in Aβ-activated microglia. Deciphering the molecular pathways exploited by
L. infantum
and the specific parasitic effectors involved could offer novel therapeutic targets and bioinspired strategies to mitigate microglial inflammatory responses in the context of AD.
Journal Article
Multiplex array analysis of circulating cytokines and chemokines in COVID-19 patients during the first wave of the SARS-CoV-2 pandemic in Milan, Italy
by
D’Alessandro, Sarah
,
Maina, Kevin Kamau
,
Perego, Federica
in
Aged
,
Aged, 80 and over
,
Allergology
2024
Background
The systemic inflammatory syndrome called “cytokine storm” has been described in COVID-19 pathogenesis, contributing to disease severity. The analysis of cytokine and chemokine levels in the blood of 21 SARS-CoV-2 positive patients throughout the phases of the pandemic has been studied to understand immune response dysregulation and identify potential disease biomarkers for new treatments. The present work reports the cytokine and chemokine levels in sera from a small cohort of individuals primarily infected with SARS-CoV-2 during the first wave of the COVID-19 pandemic in Milan (Italy).
Results
Among the 27 cytokines and chemokines investigated, a significant higher expression of Interleukin-9 (IL-9), IP-10 (CXCL10), MCP-1 (CCL2) and RANTES (CCL-5) in infected patients compared to uninfected subjects was observed. When the change in cytokine/chemokine levels was monitored over time, from the hospitalization day to discharge, only IL-6 and IP-10 showed a significant decrease. Consistent with these findings, a significant negative correlation was observed between IP-10 and anti-Spike IgG antibodies in infected individuals. In contrast, IL-17 was positively correlated with the production of IgG against SARS-CoV-2.
Conclusions
The cytokine storm and the modulation of cytokine levels by SARS-CoV-2 infection are hallmarks of COVID-19. The current global immunity profile largely stems from widespread vaccination campaigns and previous infection exposures. Consequently, the immunological features and dynamic cytokine profiles of non-vaccinated and primarily-infected subjects reported here provide novel insights into the inflammatory immune landscape in the context of SARS-CoV-2 infection, and offer valuable knowledge for addressing future viral infections and the development of novel treatments.
Journal Article
First Evidence of Intraclonal Genetic Exchange in Trypanosomatids Using Two Leishmania infantum Fluorescent Transgenic Clones
by
Balaña-Fouce, Rafael
,
Reguera, Rosa M.
,
Calvo-Álvarez, Estefanía
in
Animals
,
Biology and Life Sciences
,
Cell cycle
2014
The mode of reproduction in Leishmania spp has been argued to be essentially clonal. However, recent data (genetic analysis of populations and co-infections in sand flies) have proposed the existence of a non-obligate sexual cycle in the extracellular stage of the parasite within the sand fly vector. In this article we propose the existence of intraclonal genetic exchange in the natural vector of Leishmania infantum.
We have developed transgenic L. infantum lines expressing drug resistance markers linked to green and red fluorescent reporters. We hypothesized whether those cells with identical genotype can recognize each other and mate. Both types of markers were successfully exchanged within the sand fly midgut of the natural vector Phlebotomus perniciosus when individuals from these species were fed with a mixture of parental clones. Using the yellow phenotype and drug resistance markers, we provide evidence for genetic exchange in L. infantum. The hybrid progeny appeared to be triploid based on DNA content analysis. The hybrid clone analyzed was stable throughout the complete parasite life cycle. The progress of infections by the hybrid clone in BALB/c mice caused a reduction in parasite loads in both spleen and liver, and provided weight values similar to those obtained with uninfected mice. Spleen arginase activity was also significantly reduced relative to parental strains.
A L. infantum hybrid lineage was obtained from intraclonal genetic exchange within the midgut of the natural vector, suggesting the ability of this parasite to recognize the same genotype and mate. The yellow hybrid progeny is stable throughout the whole parasite life cycle but with a slower virulence, which correlates well with the lower arginase activity detected both in vitro and in vivo infections.
Journal Article
Exposure of Anopheles mosquitoes to trypanosomes reduces reproductive fitness and enhances susceptibility to Plasmodium
2020
During a blood meal, female Anopheles mosquitoes are potentially exposed to diverse microbes in addition to the malaria parasite, Plasmodium. Human and animal African trypanosomiases are frequently co-endemic with malaria in Africa. It is not known whether exposure of Anopheles to trypanosomes influences their fitness or ability to transmit Plasmodium. Using cell and molecular biology approaches, we found that Trypanosoma brucei brucei parasites survive for at least 48h after infectious blood meal in the midgut of the major malaria vector, Anopheles coluzzii before being cleared. This transient survival of trypanosomes in the midgut is correlated with a dysbiosis, an alteration in the abundance of the enteric bacterial flora in Anopheles coluzzii. Using a developmental biology approach, we found that the presence of live trypanosomes in mosquito midguts also reduces their reproductive fitness, as it impairs the viability of laid eggs by affecting their hatching. Furthermore, we found that Anopheles exposure to trypanosomes enhances their vector competence for Plasmodium, as it increases their infection prevalence. A transcriptomic analysis revealed that expression of only two Anopheles immune genes are modulated during trypanosome exposure and that the increased susceptibility to Plasmodium was microbiome-dependent, while the reproductive fitness cost was dependent only on the presence of live trypanosomes but was microbiome independent. Taken together, these results demonstrate multiple effects upon Anopheles vector competence for Plasmodium caused by eukaryotic microbes interacting with the host and its microbiome, which may in turn have implications for malaria control strategies in co-endemic areas.
Journal Article
In Vitro Antiparasitic Activities of Monovalent Ionophore Compounds for Human and Canine Leishmaniases
by
D’Alessandro, Sarah
,
Spada, Eva
,
Perego, Roberta
in
active ingredients
,
amastigotes
,
Blood & organ donations
2022
The leishmaniases are vector-borne parasitic diseases affecting humans and animals, with high mortality rates in endemic countries. Infected dogs represent the main reservoir of infection. Disease control is mainly based on chemotherapy, which, at present, shows serious drawbacks both in humans and dogs. Therefore, the discovery or repurposing of new treatments is mandatory. Here, three monovalent ionophores (salinomycin, monensin, nigericin) were tested against promastigotes of Leishmania (L.) infantum, Leishmania tropica, and Leishmania braziliensis, and against amastigotes of L. infantum within human and, for the first time, canine macrophages. All three drugs were leishmanicidal against all Leishmania spp. promastigotes with IC50 values between 7.98 and 0.23 µM. Monensin and nigericin showed IC50 values < 1 µM, whereas salinomycin was the least active compound (IC50 > 4 µM). Notably, the ionophores killed L. infantum amastigotes within human THP-1 cells with IC50 values ranging from 1.67 to 1.93 µM, but they only reduced by 27–37% the parasite burden in L. infantum-infected canine macrophages, showing a host-specific efficacy. Moreover, a selective higher toxicity against canine macrophages was observed. Overall, repurposed ionophores have the potential to be further investigated as anti-Leishmania agents, but different drug options may be required to tackle human or canine leishmaniases.
Journal Article