Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
22 result(s) for "Camacho-Pérez, Enrique"
Sort by:
Geo-Sensing-Based Analysis of Urban Heat Island in the Metropolitan Area of Merida, Mexico
Urban Heat Islands are a major environmental and public health concern, causing temperature increase in urban areas. This study used satellite imagery and machine learning to analyze the spatial and temporal patterns of land surface temperature distribution in the Metropolitan Area of Merida (MAM), Mexico, from 2001 to 2021. The results show that land surface temperature has increased in the MAM over the study period, while the urban footprint has expanded. The study also found a high correlation (r> 0.8) between changes in land surface temperature and land cover classes (urbanization/deforestation). If the current urbanization trend continues, the difference between the land surface temperature of the MAM and its surroundings is expected to reach 3.12 °C ± 1.11 °C by the year 2030. Hence, the findings of this study suggest that the Urban Heat Island effect is a growing problem in the MAM and highlight the importance of satellite imagery and machine learning for monitoring and developing mitigation strategies.
Automatic Detection of Railway Faults Using Neural Networks: A Comparative Study of Transfer Learning Models and YOLOv11
Developing reliable railway fault detection systems is crucial for ensuring both safety and operational efficiency. Various artificial intelligence frameworks, especially deep learning models, have shown significant potential in enhancing fault detection within railway infrastructure. This study explores the application of deep learning models for railway fault detection, focusing on both transfer learning architectures and a novel classification framework. Transfer learning was utilized with architectures such as ResNet50V2, Xception, VGG16, MobileNet, and InceptionV3, which were fine-tuned to classify railway track images into defective and non-defective categories. Additionally, the state-of-the-art YOLOv11 model was adapted for the same classification task, leveraging advanced data augmentation techniques to achieve high accuracy. Among the transfer learning models, VGG16 demonstrated the best performance with a test accuracy of 89.18%. However, YOLOv11 surpassed all models, achieving a test accuracy of 92.64% while maintaining significantly lower computational demands. These findings underscore the versatility of deep learning models and highlight the potential of YOLOv11 as an efficient and accurate solution for railway fault classification tasks.
Constrained Gray-Box Identification of Electromechanical Systems Under Unfiltered Step-Response Data
This paper presents a physically constrained grey-box identification framework for electromechanical systems, illustrated through the dynamics of brushed DC motors. The method estimates all electromechanical parameters by minimizing a normalized residual that combines current, velocity, and steady-state algebraic constraints under a current-limit condition. Classical approaches such as least-squares and black-box identification often lack physical interpretability and do not explicitly enforce steady-state consistency, making their estimates susceptible to nonphysical parameter drift. The proposed formulation incorporates these physical constraints within a Levenberg–Marquardt scheme with signal normalization, enabling the joint minimization of current and velocity errors. Validation was performed using step-response data from two DC motors under both synthetic and experimental conditions. When applied to unfiltered measurements, the method maintained steady-state relative errors below 1% and achieved low trajectory discrepancies, with NRMSE in velocity between 2.6 and 3.2% and NRMSE in current between 0.9 and 1.2% across both motors. Embedding physical and steady-state constraints directly into the cost function improves robustness and ensures physically consistent parameter estimates, even under high measurement noise and without filtering. The approach provides a general strategy for dynamic system identification under physical consistency requirements and is suitable for rapid calibration, diagnostic monitoring, and controller tuning in robotic and mechatronic applications.
Neural Network-Based Body Weight Prediction in Pelibuey Sheep through Biometric Measurements
This paper presents an intelligent system for the dynamic estimation of sheep body weight (BW). The methodology used to estimate body weight is based on measuring seven biometric parameters: height at withers, rump height, body length, body diagonal length, total body length, semicircumference of the abdomen, and semicircumference of the girth. A biometric parameter acquisition system was developed using a Kinect as a sensor. The results were contrasted with measurements obtained manually with a flexometer. The comparison gives an average root mean square error (RMSE) of 9.91 and a mean R2 of 0.81. Subsequently, the parameters were used as input in a back-propagation artificial neural network. Performance tests were performed with different combinations to make the best choice of architecture. In this way, an intelligent body weight estimation system was obtained from biometric parameters, with a 5.8% RMSE in the weight estimations for the best architecture. This approach represents an innovative, feasible, and economical alternative to contribute to decision-making in livestock production systems.
MediaPipe Frame and Convolutional Neural Networks-Based Fingerspelling Detection in Mexican Sign Language
This research proposes implementing a system to recognize the static signs of the Mexican Sign Language (MSL) dactylological alphabet using the MediaPipe frame and Convolutional Neural Network (CNN) models to correctly interpret the letters that represent the manual signals coming from a camera. The development of these types of studies allows the implementation of technological advances in artificial intelligence and computer vision in teaching Mexican Sign Language (MSL). The best CNN model achieved an accuracy of 83.63% over the sets of 336 test images. In addition, considering samples of each letter, the following results are obtained: an accuracy of 84.57%, a sensitivity of 83.33%, and a specificity of 99.17%. The advantage of this system is that it could be implemented on low-consumption equipment, carrying out the classification in real-time, contributing to the accessibility of its use.
A novel model for estimating the body weight of Pelibuey sheep through Gray Wolf Optimizer algorithm
Weight prediction in live animals remains challenging. Several studies have been carried out trying to predict the body weight in livestock through morphometric measurements, the Schaeffer's model is one of them. However, the fit of those studies in small ruminants is not well covered. Therefore, a novel model to predict the weight of Pelibuey sheep through morphometric measurements and the Gray Wolf Optimizer algorithm is presented. The model involves calculating the volume of the specimen through a truncated cone and leaving density as an estimation parameter of the algorithm. Also, two alternative models were made where the original Schaeffer's model was optimized. The modified models from the original Schaeffer's formula showed improvements up to 22.61% in R-squared and decreases up to 33.48% in RMSE. However, the truncated cone model had the best estimates, with an RMSE of 2.57, R-squared of 89.02%, and the lowest AIC. This represented a 25.13% improvement in R-squared and a 38.31% reduction in the RMSE. The model is expected to improve its efficiency if the cattle sample is larger, and it is also intended to be implemented in animals of other proportions.
Prediction of Body Weight by Using PCA-Supported Gradient Boosting and Random Forest Algorithms in Water Buffaloes (Bubalus bubalis) Reared in South-Eastern Mexico
This study aims to use advanced machine learning techniques supported by Principal Component Analysis (PCA) to estimate body weight (BW) in buffalos raised in southeastern Mexico and compare their performance. The first stage of the current study consists of body measurements and the process of determining the most informative variables using PCA, a dimension reduction method. This process reduces the data size by eliminating the complex structure of the model and provides a faster and more effective learning process. As a second stage, two separate prediction models were developed with Gradient Boosting and Random Forest algorithms, using the principal components obtained from the data set reduced by PCA. The performances of both models were compared using R2, RMSE and MAE metrics, and showed that the Gradient Boosting model achieved a better prediction performance with a higher R2 value and lower error rates than the Random Forest model. In conclusion, PCA-supported modeling applications can provide more reliable results, and the Gradient Boosting algorithm is superior to Random Forest in this context. The current study demonstrates the potential use of machine learning approaches in estimating body weight in water buffalos, and will support sustainable animal husbandry by contributing to decision making processes in the field of animal science.
Classification of FAMACHA© Scores with Support Vector Machine Algorithm from Body Condition Score and Hematological Parameters in Pelibuey Sheep
The aim of this study is to evaluate the model performance in the classification of FAMACHA© scores using Support Vector Machines (SVMs) with a focus on the estimation of the FAMACHA© scoring system used for early diagnosis and treatment management of parasitic infections. FAMACHA© scores are a color-based visual assessment system used to determine parasite load in animals, and in this study, the accuracy of the model was investigated. The model’s accuracy rate was analyzed in detail with metrics such as sensitivity, specificity, and positive/negative predictive values. The results showed that the model had high sensitivity and specificity rates for class 1 and class 3, while the performance was relatively low for class 2. These findings not only demonstrate that SVM is an effective method for classifying FAMACHA© scores but also highlight the need for improvement for class 2. In particular, the high accuracy rate (97.26%) and high kappa value (0.9588) of the model indicate that SVM is a reliable tool for FAMACHA© score estimation. In conclusion, this study demonstrates the potential of SVM technology in veterinary epidemiology and provides important information for future applications. These results may contribute to efforts to improve scientific approaches for the management of parasitic infections.
Using Post-Mortem Measurements to Predict Carcass Tissue Composition in Growing Rabbits
The objective of this study was to determine post-mortem measurements for predicting carcass traits in growing rabbits. A total of 50 clinically healthy New Zealand White × Californian male rabbits with a body weight (BW) of 1351 ± 347 g between 60 to 80 days of age were used. Body weight was recorded 12 h before slaughtering. Data recorded at slaughtering included carcass weights (HCW). After cooling at 4 °C for 24 h, carcasses were weighed (CCW) and then were carefully split longitudinally with a band saw to obtain left and right halves. In the right half carcass, the following measurements were recorded using a tape measure: dorsal length (DL), thoracic depth (TD), thigh length (TL), carcass length (CL), lumbar circumference (LC). The compactness index (CCI) was calculated as the CCW divided by the CL. Thereafter, the right half carcass was weighed and manually deboned to record weights of muscle (TCM), and bone (TCB). The CCI explained of 93% of variation for TCM (R2 = 0.93 and a CV = 9.30%). In addition, the DL was the best predictor (p < 0.001) for TCB (R2 = 0.60 and a CV = 18.9%). Our results indicated that the use of carcass measurements could accurately and precisely (R2 = ≥ 0.60 and ≤0.95) be used as alternatives to predict the carcass tissues composition in growing rabbits.
Morphological differentiation and seed quality of Lima bean (Phaseolus lunatus L.)
Lima bean ( Phaseolus lunatus L.) is composed of two major gene pools. The Andean gene pool gave rise to the Gran Lima cultigroup, and the Mesoamerican gene pool gave rise to the Papa and Sieva cultigroups. In the Yucatan Peninsula, Lima bean presents a great diversity of landraces that belong to the Mesoamerican gene pool. However, studies so far have not been able to determine whether the Papa and Sieva cultigroup germplasm resources managed by Maya farmers can be morphologically or genetically differentiated. In addition, the physiological seed quality traits of P. lunatus are still unknown. Therefore, the objectives of the study were: (1) To evaluate morphological differentiation of the Papa and Sieva cultigroups of Lima bean and (2) To evaluate the physiological seed quality based on standard germination and emergence of seedlings tests. Results showed two well-defined groups. Group A comprised landraces JMC1288, JMC1336, JMC1364 and JMC1271 belonging to the Sieva cultigroup; group B included landraces JMC1208, JMC1264, JMC1313 and JMC1337 belonging to the Papa cultigroup. The germination percentage was 84%, and rate was 15 seeds germinated d −1 . The percentage of seedling emergence was 86%, and seedling emergence rate was 14 emerged seedlings d −1 . Results confirmed the presence of the Papa and Sieva cultigroups in the Yucatan Peninsula. The landraces of Papa cultigroup produced seeds with the best physiological quality for use in breeding and conservation programmes.