Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
164 result(s) for "Camera D"
Sort by:
Transcriptomic and epigenetic responses to short-term nutrient-exercise stress in humans
High fat feeding impairs skeletal muscle metabolic flexibility and induces insulin resistance, whereas exercise training exerts positive effects on substrate handling and improves insulin sensitivity. To identify the genomic mechanisms by which exercise ameliorates some of the deleterious effects of high fat feeding, we investigated the transcriptional and epigenetic response of human skeletal muscle to 9 days of a high-fat diet (HFD) alone (Sed-HFD) or in combination with resistance exercise (Ex-HFD), using genome-wide profiling of gene expression and DNA methylation. HFD markedly induced expression of immune and inflammatory genes, which was not attenuated by Ex. Conversely, Ex markedly remodelled expression of genes associated with muscle growth and structure. We detected marked DNA methylation changes following HFD alone and in combination with Ex. Among the genes that showed a significant association between DNA methylation and gene expression changes were PYGM, which was epigenetically regulated in both groups, and ANGPTL4, which was regulated only following Ex. In conclusion, while short-term Ex did not prevent a HFD-induced inflammatory response, it provoked a genomic response that may protect skeletal muscle from atrophy. These epigenetic adaptations provide mechanistic insight into the gene-specific regulation of inflammatory and metabolic processes in human skeletal muscle.
The Association between Dietary Inflammatory Index and Aging Biomarkers/Conditions: A Systematic Review and Dose-response Meta-analysis
We performed a current study to examine the association between dietary inflammatory index (DII) score and older age-related muscle conditions, including sarcopenia, low muscle mass, low muscle strength, frailty, and/or disability. Systematic review and dose-response meta-analysis. A systematic literature search was performed using Scopus, PubMed/MEDLINE, and ISI Web of Science without limitation until October 04, 2022. Relative risk (RR) and 95% confidence interval (CI) were pooled by applying a random-effects model, while validated methods examined assess quality and publication bias via Newcastle-Ottawa Scale, Egger's regression asymmetry, and Begg's rank correlation tests respectively. A dose-response meta-analysis was conducted to estimate the RRs per 1-unit increment in DII scores. Adults (≥18 years) The risk of older age-related muscle conditions (sarcopenia, low muscle mass, low muscle strength, frailty, and/or disability) Data were available from 19 studies with 68079 participants. Results revealed that a higher DII score was significantly related to an increased risk of sarcopenia (RR=1.50; 95% CI: 1.26, 1.79; I2=53.3%; p<0.001; n=10; sample size =43097), low muscle strength (RR=1.47; 95% CI: 1.24, 1.74; I2=6.6%; p<0.001; n=4; sample size =9339), frailty (RR=1.61; 95% CI: 1.41, 1.84; I2=0.0%; p<0.001; study=5; participant=3882) and disability (RR=1.41; 95% CI: 1.16, 1.72; I2=58.4%; p=0.001; n=5; sample size =13760), but not low muscle mass (RR=1.24; 95% CI: 0.98, 1.56; I2=49.3%; p=0.069; n=4; sample size =11222). Additionally, results of the linear dose-response indicated that an increase of one point in the DII score was related to a 14% higher risk of sarcopenia, 6% higher risk of low muscle mass, 7% higher risk of low muscle strength, and a 7% higher risk of disability in adults. Non-linear dose-response relationships also revealed a positive linear association between the DII score and the risk of sarcopenia (Pnonlinearity = 0.097, Pdose-response <0.001), frailty (P nonlinearity = 0.844, Pdose-response=0.010) and disability (Pnonlinearity = 0.596, Pdose-response=0.007). Adherence to a pro-inflammatory diet was significantly associated with a higher risk of sarcopenia and other age-associated adverse effects such as low muscle strength, disability, and frailty. These results indicate a necessity to prioritize the reduction of pro-inflammatory diets to help promote overall older age-related muscle conditions.
Author Correction: Transcriptomic and epigenetic responses to short-term nutrient-exercise stress in humans
A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has not been fixed in the paper.A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has not been fixed in the paper.
Alcohol Ingestion Impairs Maximal Post-Exercise Rates of Myofibrillar Protein Synthesis following a Single Bout of Concurrent Training
The culture in many team sports involves consumption of large amounts of alcohol after training/competition. The effect of such a practice on recovery processes underlying protein turnover in human skeletal muscle are unknown. We determined the effect of alcohol intake on rates of myofibrillar protein synthesis (MPS) following strenuous exercise with carbohydrate (CHO) or protein ingestion. In a randomized cross-over design, 8 physically active males completed three experimental trials comprising resistance exercise (8×5 reps leg extension, 80% 1 repetition maximum) followed by continuous (30 min, 63% peak power output (PPO)) and high intensity interval (10×30 s, 110% PPO) cycling. Immediately, and 4 h post-exercise, subjects consumed either 500 mL of whey protein (25 g; PRO), alcohol (1.5 g·kg body mass⁻¹), 12±2 standard drinks) co-ingested with protein (ALC-PRO), or an energy-matched quantity of carbohydrate also with alcohol (25 g maltodextrin; ALC-CHO). Subjects also consumed a CHO meal (1.5 g CHO·kg body mass⁻¹) 2 h post-exercise. Muscle biopsies were taken at rest, 2 and 8 h post-exercise. Blood alcohol concentration was elevated above baseline with ALC-CHO and ALC-PRO throughout recovery (P<0.05). Phosphorylation of mTOR(Ser2448) 2 h after exercise was higher with PRO compared to ALC-PRO and ALC-CHO (P<0.05), while p70S6K phosphorylation was higher 2 h post-exercise with ALC-PRO and PRO compared to ALC-CHO (P<0.05). Rates of MPS increased above rest for all conditions (∼29-109%, P<0.05). However, compared to PRO, there was a hierarchical reduction in MPS with ALC-PRO (24%, P<0.05) and with ALC-CHO (37%, P<0.05). We provide novel data demonstrating that alcohol consumption reduces rates of MPS following a bout of concurrent exercise, even when co-ingested with protein. We conclude that alcohol ingestion suppresses the anabolic response in skeletal muscle and may therefore impair recovery and adaptation to training and/or subsequent performance.
High-Protein Diets during either Resistance or Concurrent Training Have No Detrimental Effect on Bone Parameters in Resistance-Trained Males
Background: The effects of combining resistance training (RT) and concurrent training (CT; resistance + endurance training) with varied protein doses on bone measures remain poorly understood. Hence, we conducted a comparison of the impacts of two high-protein diets (1.6 or 3.2 g kg−1 d−1) over 16 weeks in resistance-trained males, either with CT or RT alone. Methods: A total of forty-eight males, all of whom were resistance-trained, had the following demographics: 26.6 ± 6 years, body mass index: 25.6 ± 2.9 kg m−2 administered either 3.2 g kg−1 d−1 protein (CT2; n = 12; RT2; n = 12) or 1.6 g kg−1 d−1 protein (CT1; n = 12; RT1; n = 12) during 16 weeks (four sessions·w−1). Bone parameters were assessed pre- and post-intervention. Results: There was no significant interaction between the intervention group and time for the legs, arms, ribs, or pelvis area BMC and BMD (p > 0.05). For the BMD of the pelvis and the BMC of the right ribs, however, there were significant time effects noted (p < 0.05). Furthermore, there was a significant interaction between the intervention group and time in the lumbar and thoracic spines, with a particular time effect noted for the thoracic spine region (p < 0.05). The regional differences in skeletal responses to the intervention are highlighted by these data. Conclusion: Our findings show that the intake of two high-protein diets combined with RT and CT during 16 weeks had no adverse effects on bone tissue parameters. While these findings indicate that protein intake between 2 and 3 times the current RDI does not promote bone demineralization when consumed in conjunction with exercise, future studies investigating the long-term effects of chronic high protein intake on bone tissue health are warranted.
Adaptations to Concurrent Training in Combination with High Protein Availability: A Comparative Trial in Healthy, Recreationally Active Men
Background We implemented a high-protein diet (2 g·kg −1 ·d −1 ) throughout 12 weeks of concurrent exercise training to determine whether interferences to adaptation in muscle hypertrophy, strength and power could be attenuated compared to resistance training alone. Methods Thirty-two recreationally active males (age: 25 ± 5 years, body mass index: 24 ± 3 kg·m −2 ; mean ± SD) performed 12 weeks of either isolated resistance (RES; n  = 10) or endurance (END; n  = 10) training (three sessions·w −1 ), or concurrent resistance and endurance (CET; n  = 12) training (six sessions·w −1 ). Maximal strength (1RM), body composition and power were assessed pre- and post-intervention. Results Leg press 1RM increased ~ 24 ± 13% and ~ 33 ± 16% in CET and RES from PRE-to-POST ( P  < 0.001), with no difference between groups. Total lean mass increased ~ 4% in both CET and RES from PRE-to-POST ( P  < 0.001). Ultrasound estimated vastus lateralis volume increased ~ 15% in CET and ~ 11% in RES from PRE-to-POST ( P  < 0.001), with no difference between groups. Wingate peak power relative to body mass displayed a trend ( P  = 0.053) to be greater in RES (12.5 ± 1.6 W·kg BM −1 ) than both CET (10.8 ± 1.7 W·kg BM −1 ) and END (10.9 ± 1.8 W·kg BM −1 ) at POST. Absolute VO 2peak increased 6.9% in CET and 12% in END from PRE-to-POST ( P  < 0.05), with no difference between groups. Conclusion Despite high protein availability, select measures of anaerobic power-based adaptations, but not muscle strength or hypertrophy, appear susceptible to ‘interference effects’ with CET and should be closely monitored throughout training macro-cycles. T rials Registry : This trial was registered with the Australian-New Zealand Clinical Trials Registry (ACTRN12617001229369).
Acute low-intensity cycling with blood-flow restriction has no effect on metabolic signaling in human skeletal muscle compared to traditional exercise
Purpose Autophagy is an intracellular degradative system sensitive to hypoxia and exercise-induced perturbations to cellular bioenergetics. We determined the effects of low-intensity endurance-based exercise performed with blood-flow restriction (BFR) on cell signaling adaptive responses regulating autophagy and substrate metabolism in human skeletal muscle. Methods In a randomized cross-over design, nine young, healthy but physically inactive males completed three experimental trials separated by 1 week of recovery consisting of either a resistance exercise bout (REX: 4 × 10 leg press repetitions, 70% 1-RM), endurance exercise (END: 30 min cycling, 70% V O 2peak ), or low-intensity cycling with BFR (15 min, 40% V O 2peak ). A resting muscle biopsy was obtained from the vastus lateralis 2 weeks prior to the first exercise trial and 3 h after each exercise bout. Results END increased ULK1 Ser757 phosphorylation above rest and BFR (~37 to 51%, P  < 0.05). Following REX, there were significant elevations compared to rest (~348%) and BFR (~973%) for p38γ MAPK Thr180/Tyr182 phosphorylation ( P  < 0.05). Parkin content was lower following BFR cycling compared to REX (~20%, P  < 0.05). There were no exercise-induced changes in select markers of autophagy following BFR. Genes implicated in substrate metabolism ( HK2 and PDK4) were increased above rest (~143 to 338%) and BFR cycling (~212 to 517%) with END ( P  < 0.001). Conclusion A single bout of low-intensity cycling with BFR is insufficient to induce intracellular “stress” responses (e.g., high rates of substrate turnover and local hypoxia) necessary to activate skeletal muscle autophagy signaling.