Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
941 result(s) for "Camilo, F."
Sort by:
Asymmetric mass ratios for bright double neutron-star mergers
The discovery of a radioactively powered kilonova associated with the binary neutron-star merger GW170817 remains the only confirmed electromagnetic counterpart to a gravitational-wave event 1 , 2 . Observations of the late-time electromagnetic emission, however, do not agree with the expectations from standard neutron-star merger models. Although the large measured ejecta mass 3 , 4 could be explained by a progenitor system that is asymmetric in terms of the stellar component masses (that is, with a mass ratio q of 0.7 to 0.8) 5 , the known Galactic population of merging double neutron-star systems (that is, those that will coalesce within billions of years or less) has until now consisted only of nearly equal-mass ( q  > 0.9) binaries 6 . The pulsar PSR J1913+1102 is a double system in a five-hour, low-eccentricity (0.09) orbit, with an orbital separation of 1.8 solar radii 7 , and the two neutron stars are predicted to coalesce in 470 − 11 + 12 million years owing to gravitational-wave emission. Here we report that the masses of the pulsar and the companion neutron star, as measured by a dedicated pulsar timing campaign, are 1.62 ± 0.03 and 1.27 ± 0.03 solar masses, respectively. With a measured mass ratio of q  = 0.78 ± 0.03, this is the most asymmetric merging system reported so far. On the basis of this detection, our population synthesis analysis implies that such asymmetric binaries represent between 2 and 30 per cent (90 per cent confidence) of the total population of merging binaries. The coalescence of a member of this population offers a possible explanation for the anomalous properties of GW170817, including the observed kilonova emission from that event. Pulsar timing measurements show a mass ratio of about 0.8 for the double neutron-star system PSR J1913+1102, and population synthesis models indicate that such asymmetric systems represent 2–30% of merging binaries.
Effect of single and combined expression of Lysophosphatidic Acid Acyltransferase, Glycerol-3-Phosphate Acyltransferase, and Diacylglycerol Acyltransferase on lipid accumulation and composition in Neochloris oleoabundans
Microalgal lipids are promising feedstocks for food and biofuels. Since lipid production by microalgae is not yet economically feasible, genetic engineering is becoming a promising strategy to achieve higher lipid accumulation and productivities. Enzymes involved in the Kennedy pathway such as glycerol-3-phosphate acyltransferase (GPAT), lysophosphatidic acid acyltransferase (LPAT), and diacylglycerol acyltransferase (DGAT) catalyze key steps in the formation of triacylglycerol, which is the main constituent of lipids in N. oleoabundans. The overexpression of these enzymes in the targeted strain has a great potential to further increase their triacylglycerol content. We overexpressed single and multiple encoding genes for LPAT, GPAT, and DGAT from Acutodesmus obliquus in N. oleoabundans. Strains overexpressing single genes produced up to 52% and 45% g · gDW-1, which corresponds to 1.3- and 1.4-fold increase in total fatty acids and triacylglycerols, respectively. The orchestrated expression of the three genes resulted in 49% and 39% g · gDW-1, which is 1.2-folds increase in total fatty acids and triacylglycerols. Single expression of LPAT, GPAT, and DGAT genes resulted in higher lipid productivities during starvation without a significant effect on growth and photosynthetic activity during replete conditions. On the other hand, the simultaneous expression of LPAT, GPAT, and DGAT genes resulted in 52% lower growth rate, 14% lower photosynthetic activity and 4-folds increase in cell diameter. Moreover, the multigene expressing line showed a decrease in carbohydrates and protein content and an increase in pigments during nitrogen starved condition. The single and multiple expression of heterologous genes LPAT, GPAT, and DGAT showed to significantly enhanced the lipid accumulation in N. oleoabundans. Single gene expression resulted in higher lipid production and productivities without having a significant impact in the physiological status of the strains. This approach shows the potential for the generation of microalgal strains with higher economical potential for the production of lipids.
A compilation of experimental data on the mechanical properties and microstructural features of Ti-alloys
The present work depicts a compilation of mechanical properties of 282 distinct multicomponent Ti-based alloys and their respective microstructural features. The dataset includes the chemical composition (in at.%), phase constituents, Young modulus, hardness, yield strength, ultimate strength, and elongation. Each entry is associated with a high-quality experimental work containing a complete description of the processing route and testing setup. Furthermore, we incorporated flags to the dataset indicating (a) the use of high-resolution techniques for microstructural analysis and (b) the observation of non-linear elastic responses during mechanical testing. Oxygen content and average grain size are presented whenever available. The selected features can help material scientists to adjust the data to their needs concerning materials selection and discovery. Most alloys in the dataset were produced via an ingot metallurgy route, followed by solubilization and water quench (≈58%), which is considered a standard condition for β-Ti alloys. The database is hosted and maintained up to date in an open platform. For completeness, a few graphical representations of the dataset are included.Measurement(s)elastic modulus • mechanical strength (yield) • deformation at rupture • Vickers hardness • oxygen content • grain size • mechanical strength (ultimate)Technology Type(s)longitudinal and transversal pulse-echo ultrasound, nanoidentation, mechanical testing • mechanical testing (tensile), mechanical testing (compression) • Vickers hardness testing • inert gas fusion chemical analysis • linear intercept methodSample Characteristic - Organismmetallic alloysSample Characteristic - Environmentroom temperature
Overrepresentation of Glutamate Signaling in Alzheimer's Disease: Network-Based Pathway Enrichment Using Meta-Analysis of Genome-Wide Association Studies
Genome-wide association studies (GWAS) have successfully identified several risk loci for Alzheimer's disease (AD). Nonetheless, these loci do not explain the entire susceptibility of the disease, suggesting that other genetic contributions remain to be identified. Here, we performed a meta-analysis combining data of 4,569 individuals (2,540 cases and 2,029 healthy controls) derived from three publicly available GWAS in AD and replicated a broad genomic region (>248,000 bp) associated with the disease near the APOE/TOMM40 locus in chromosome 19. To detect minor effect size contributions that could help to explain the remaining genetic risk, we conducted network-based pathway analyses either by extracting gene-wise p-values (GW), defined as the single strongest association signal within a gene, or calculated a more stringent gene-based association p-value using the extended Simes (GATES) procedure. Comparison of these strategies revealed that ontological sub-networks (SNs) involved in glutamate signaling were significantly overrepresented in AD (p<2.7×10(-11), p<1.9×10(-11); GW and GATES, respectively). Notably, glutamate signaling SNs were also found to be significantly overrepresented (p<5.1×10(-8)) in the Alzheimer's disease Neuroimaging Initiative (ADNI) study, which was used as a targeted replication sample. Interestingly, components of the glutamate signaling SNs are coordinately expressed in disease-related tissues, which are tightly related to known pathological hallmarks of AD. Our findings suggest that genetic variation within glutamate signaling contributes to the remaining genetic risk of AD and support the notion that functional biological networks should be targeted in future therapies aimed to prevent or treat this devastating neurological disorder.
A repeating fast radio burst
Observations of repeated fast radio bursts, having dispersion measures and sky positions consistent with those of FRB 121102, show that the signals do not originate in a single cataclysmic event and may come from a young, highly magnetized, extragalactic neutron star. FRB 121102's repeat performance Fast radio bursts (FRBs) are transient radio pulses that last a few milliseconds. They are thought to be extragalactic, and are of unknown physical origin. Many FRB models have proposed the cause to be one-time-only cataclysmic events. Follow-up monitoring of detected bursts did not reveal repeat bursts, consistent with such models. However, this paper reports ten additional bursts from the direction of FRB 121102, demonstrating that its source survived the energetic events that caused the bursts. Although there may be multiple physical origins for the burst, the repeating bursts seen from FRB 121102 support an origin in a young, highly magnetized, extragalactic neutron star. Fast radio bursts are millisecond-duration astronomical radio pulses of unknown physical origin that appear to come from extragalactic distances 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 . Previous follow-up observations have failed to find additional bursts at the same dispersion measure (that is, the integrated column density of free electrons between source and telescope) and sky position as the original detections 9 . The apparent non-repeating nature of these bursts has led to the suggestion that they originate in cataclysmic events 10 . Here we report observations of ten additional bursts from the direction of the fast radio burst FRB 121102. These bursts have dispersion measures and sky positions consistent with the original burst 4 . This unambiguously identifies FRB 121102 as repeating and demonstrates that its source survives the energetic events that cause the bursts. Additionally, the bursts from FRB 121102 show a wide range of spectral shapes that appear to be predominantly intrinsic to the source and which vary on timescales of minutes or less. Although there may be multiple physical origins for the population of fast radio bursts, these repeat bursts with high dispersion measure and variable spectra specifically seen from the direction of FRB 121102 support an origin in a young, highly magnetized, extragalactic neutron star 11 , 12 .
Experimental and computational investigation of Ti-Nb-Fe-Zr alloys with limited Fe contents for biomedical applications
Among many β-metastable alloys explored for biomedical applications, alloys from the Ti-Nb-Fe-Zr system present great potential regarding cost and mechanical strength. In this article, we take a new look at the possibility of using Fe as a minor alloying element in the Ti-Nb-Fe-Zr system, with additions up to 2.0 wt% Fe. Additional compositions fixing the Nb/Fe ratio and changing Zr content from 7–13 wt% were also explored, resulting in a total of five different alloys. The samples were solution-treated and then subjected to three different conditions: water-quenched, furnace-cooled, and step-quenched to 450 ºC for 12 h. Resultant microstructures were analyzed using X-ray diffraction, differential scanning calorimetry, scanning, and transmission electron microscopy. DSC experiments indicate that Zr might alter the phase transformations that occur during heating and cooling cycles. First-principles calculations confirmed that Zr's addition is crucial to reduce the elastic modulus of the β matrix and increase the ω-phase formation energy relative to β. All alloys presented mechanical properties suitable for biomedical applications; however, Ti-23Nb-2.0Fe-10Zr (wt %) stands out with the best combination of mechanical strength and elastic modulus after aging.
Strong-Field Gravity Tests with the Double Pulsar
Continued timing observations of the double pulsar PSR J0737–3039A/B, which consists of two active radio pulsars (A and B) that orbit each other with a period of 2.45 h in a mildly eccentric ( e=0.088 ) binary system, have led to large improvements in the measurement of relativistic effects in this system. With a 16-yr data span, the results enable precision tests of theories of gravity for strongly self-gravitating bodies and also reveal new relativistic effects that have been expected but are now observed for the first time. These include effects of light propagation in strong gravitational fields which are currently not testable by any other method. In particular, we observe the effects of retardation and aberrational light bending that allow determination of the spin direction of the pulsar. In total, we detect seven post-Keplerian parameters in this system, more than for any other known binary pulsar. For some of these effects, the measurement precision is now so high that for the first time we have to take higher-order contributions into account. These include the contribution of the A pulsar’s effective mass loss (due to spin-down) to the observed orbital period decay, a relativistic deformation of the orbit, and the effects of the equation of state of superdense matter on the observed post-Keplerian parameters via relativistic spin-orbit coupling. We discuss the implications of our findings, including those for the moment of inertia of neutron stars, and present the currently most precise test of general relativity’s quadrupolar description of gravitational waves, validating the prediction of general relativity at a level of 1.3×10-4 with 95% confidence. We demonstrate the utility of the double pulsar for tests of alternative theories of gravity by focusing on two specific examples and also discuss some implications of the observations for studies of the interstellar medium and models for the formation of the double pulsar system. Finally, we provide context to other types of related experiments and prospects for the future.
Analysis and discrimination of Canadian honey using quantitative NMR and multivariate statistical methods
To address the growing concern of honey adulteration in Canada and globally, a quantitative NMR method was developed to analyze 424 honey samples collected across Canada as part of two surveys in 2018 and 2019 led by the Canadian Food Inspection Agency. Based on a robust and reproducible methodology, NMR data were recorded in triplicate on a 700 MHz NMR spectrometer equipped with a cryoprobe, and the data analysis led to the identification and quantification of 33 compounds characteristic of the chemical composition of honey. The high proportion of Canadian honey in the library provided a unique opportunity to apply multivariate statistical methods including PCA, PLS-DA, and SIMCA in order to differentiate Canadian samples from the rest of the world. Through satisfactory model validation, both PLS-DA as a discriminant modeling technique and SIMCA as a class modeling method proved to be reliable at differentiating Canadian honey from a diverse set of honeys with various countries of origins and floral types. The replacement method of optimization was successfully applied for variable selection, and trigonelline, proline, and ethanol at a lower extent were identified as potential chemical markers for the discrimination of Canadian and non-Canadian honeys.
Degenerate perturbation theory in thermoacoustics: high-order sensitivities and exceptional points
In this study, we connect concepts that have been recently developed in thermoacoustics, specifically (i) high-order spectral perturbation theory, (ii) symmetry-induced degenerate thermoacoustic modes, (iii) intrinsic thermoacoustic modes and (iv) exceptional points. Their connection helps gain physical insight into the behaviour of the thermoacoustic spectrum when parameters of the system are varied. First, we extend high-order adjoint-based perturbation theory of thermoacoustic modes to the degenerate case. We provide explicit formulae for the calculation of the eigenvalue corrections to any order. These formulae are valid for self-adjoint, non-self-adjoint or even non-normal systems; therefore, they can be applied to a large range of problems, including fluid dynamics. Second, by analysing the expansion coefficients of the eigenvalue corrections as a function of a parameter of interest, we accurately estimate the radius of convergence of the power series. Third, we connect the existence of a finite radius of convergence to the existence of singularities in parameter space. We identify these singularities as exceptional points, which correspond to defective thermoacoustic eigenvalues, with infinite sensitivity to infinitesimal changes in the parameters. At an exceptional point, two eigenvalues and their associated eigenvectors coalesce. Close to an exceptional point, strong veering of the eigenvalue trajectories is observed. As demonstrated in recent work, exceptional points naturally arise in thermoacoustic systems due to the interaction between modes of acoustic and intrinsic origin. The role of exceptional points in thermoacoustic systems sheds new light on the physics and sensitivity of thermoacoustic stability, which can be leveraged for passive control by small design modifications.
Tests of General Relativity from Timing the Double Pulsar
The double pulsar system PSR J0737-3039A/B is unique in that both neutron stars are detectable as radio pulsars. They are also known to have much higher mean orbital velocities and accelerations than those of other binary pulsars. The system is therefore a good candidate for testing Einstein's theory of general relativity and alternative theories of gravity in the strong-field regime. We report on precision timing observations taken over the 2.5 years since its discovery and present four independent strong-field tests of general relativity. These tests use the theory-independent mass ratio of the two stars. By measuring relativistic corrections to the Keplerian description of the orbital motion, we find that the \"post-Keplerian\" parameter s agrees with the value predicted by general relativity within an uncertainty of 0.05%, the most precise test yet obtained. We also show that the transverse velocity of the system's center of mass is extremely small. Combined with the system's location near the Sun, this result suggests that future tests of gravitational theories with the double pulsar will supersede the best current solar system tests. It also implies that the second-born pulsar may not have formed through the core collapse of a helium star, as is usually assumed.