Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
45
result(s) for
"Campbell, H. Tyler"
Sort by:
A sustainable approach for weed and insect management in sweetpotato: breeding for weed and insect tolerant/resistant clones
by
Williams, Livy H.
,
Culbreath, Julianna
,
Cutulle, Matthew
in
Agricultural production
,
Cloning
,
Competition
2023
Weed management is consistently ranked among the top priorities of the United States sweetpotato industry. To provide additional weed and insect management strategies for sweetpotato, we initiated development of insect-resistant germplasm that also has weed tolerance by breeding and selecting for sweetpotato clones that are fast growing and have semi-erect to erect canopy architecture. Field studies were conducted in 2018 and 2019 in Charleston, South Carolina, to quantify the effects of weed-free interval and sweetpotato clone on weed counts for naturally occurring weed species, storage root yield, and insect resistance to the major pests of sweetpotato. Weed-free intervals included plots that were weedy all season and weed-free for 2, 3, and 4 wk after transplanting. Sweetpotato clones evaluated included ‘Beauregard’, ‘Covington’, ‘Monaco’, and six advanced selections with semi-erect to erect plant habit. Significant weed-free interval and sweetpotato clone main effects were observed for all variables measured, but not for their interaction. Two sweetpotato clones, USDA-17-037 and USDA-17-077, were consistent across both years and had the lowest weed counts, exhibited enhanced insect resistance, and were the highest yielding entries. These results demonstrate the potential for development of insect-resistant sweetpotato germplasm with a vigorous, erect plant habit that may be less susceptible to weed interference than cultivars with spreading shoot growth. The combination of germplasm that is both resistant to insect pests and competitive with weeds can provide organic and subsistence sweetpotato growers solutions to these critical issues related to sweetpotato production. Nomenclature: Sweetpotato, Ipomoea batatas (L.) Lam.
Journal Article
Somatic symptoms, psychological distress and trauma after disasters: lessons from the 2014 Hazelwood mine fire and 2019–20 Black Summer bushfires
2023
Background
Wildfires cause significant physical and mental ill-health. How physical and mental symptoms interact following wildfire smoke exposure is unclear, particularly in the context of repeated exposures. In this cross-sectional study we investigated how posttraumatic stress and general psychological distress associated with somatic symptoms in a community exposed to multiple smoke events.
Methods
A random weighted sample of 709 adults exposed to smoke during the 2014 Hazelwood coal mine fire in south-eastern Australia completed a survey in 2020. The survey coincided with the Black Summer wildfires that caused a similar period of smoke haze in the region. Participants self-reported somatic symptoms (PHQ-15) and mine fire-related posttraumatic stress (IES-R) experienced over the previous week, general psychological distress (K10) experienced over the previous four weeks, lifetime health diagnoses and demographic information. Associations between posttraumatic stress, general psychological distress, and each PHQ-15 somatic symptom were analysed using ordinal logistic regression models.
Results
Overall, 36.2% of participants reported moderate- or high-level somatic symptomology. The most frequent somatic symptoms were fatigue, limb pain, trouble sleeping, back pain, headaches, and shortness of breath. After controlling for confounding factors, general psychological distress and posttraumatic stress were independently associated with all somatic symptoms (except menstrual problems in females for posttraumatic stress).
Conclusions
Results highlight the high prevalence of somatic symptoms and their association with general psychological distress and posttraumatic stress within a community in the midst of a second large-scale smoke event. It is essential that healthcare providers and public health authorities consider the interconnections of these conditions when supporting communities affected by climate-related disasters.
Journal Article
Sixfold enhancement of superconductivity in a tunable electronic nematic system
by
Hodovanets, Halyna
,
Metz, Tristin
,
Eckberg, Chris
in
639/766/119/1003
,
639/766/119/2795
,
Absolute zero
2020
The electronic nematic phase—in which electronic degrees of freedom lower the crystal rotational symmetry—is commonly observed in high-temperature superconductors. However, understanding the role of nematicity and nematic fluctuations in Cooper pairing is often made more complicated by the coexistence of other orders, particularly long-range magnetic order. Here we report the enhancement of superconductivity in a model electronic nematic system that is not magnetic, and show that the enhancement is directly born out of strong nematic fluctuations associated with a quantum phase transition. We present measurements of the resistance as a function of strain in Ba
1−
x
Sr
x
Ni
2
As
2
to show that strontium substitution promotes an electronically driven nematic order in this system. In addition, the complete suppression of that order to absolute zero temperature leads to an enhancement of the pairing strength, as evidenced by a sixfold increase in the superconducting transition temperature. The direct relation between enhanced pairing and nematic fluctuations in this model system, as well as the interplay with a unidirectional charge-density-wave order comparable to that found in the cuprates, offers a means to investigate the role of nematicity in strengthening superconductivity.
Transport measurements show that nematic fluctuations near a phase transition increase the temperature at which superconductivity occurs by a factor of nearly six. This happens in a non-magnetic nickel-based compound.
Journal Article
Multiscale habitat relationships of a habitat specialist over time: The case of ocelots in Texas from 1982 to 2017
by
Anderson, C. Jane
,
Tewes, Michael E.
,
Veals, Amanda M.
in
Animals
,
Anthropogenic factors
,
Biodiversity
2022
Evaluating temporal trends in habitat and behavioral responses is critical for conservation, yet long‐term monitoring studies are rare. We used a 35‐year dataset (1982–2017) to assess multiscale habitat use and selection by an endangered carnivore, the ocelot (Leopardus pardalis), in South Texas, USA. We used a time series of remotely sensed imagery to map changes in availability of woody cover, habitat critical to ocelots that has diminished due to anthropogenic development and increased road infrastructure. Our objectives were to characterize habitat relationships, predict high‐quality habitat, and assess behavior with changing environmental conditions. We fit functional response (third order) and individual‐specific resource selection (second order) functions to assess multiscale habitat use of vegetation cover and roads. Within home ranges, ocelots used woody cover greater than availability. Ocelots used areas near roads in proportion to availability, with minor exceptions. We observed changes in habitat use by ocelots across time with higher proportions of woody and non‐woody cover used in later time periods. Average availability of woody cover decreased in the study area between the 1980s and 2010s (0.44 in 1985 to 0.39 in 2015, p < 0.001), and ocelots used areas with a higher proportion of woody cover (≥0.48) farther from high‐traffic roads compared to availability. High‐quality ocelot habitat was consistently predicted in areas with high proportions of woody cover, while areas closer to high‐traffic roads were consistently predicted as non‐habitat. The extent of predicted habitat never exceeded 47% (1515 km2) of the study area, illustrating the confined nature of ocelot habitat. Our assessment of multiscale habitat use demonstrated that higher order selection processes likely truncate resource gradients within home ranges. Ocelots did not avoid roads as expected within home ranges, which is a likely mechanism for vehicle‐induced mortality. Private lands contained ≥79% of predicted high‐quality habitat over time. Therefore, the future of ocelots in the United States relies on private land stewardship. Insights gained from these analyses can advance habitat conservation and mitigation of road mortality for ocelot populations.
Journal Article
Landscape connectivity for an endangered carnivore: habitat conservation and road mitigation for ocelots in the US
2023
ContextMaintaining landscape connectivity for wildlife has become a conservation priority in response to increasing land development and road networks. Roads affect many wildlife populations worldwide, with the distribution and density of roads having negative impacts on gene flow and landscape connectivity.ObjectivesWe aimed to identify areas along roadways that promote movement in a fragmented landscape. Our objective was to gain a deeper understanding of drivers of connectivity in a patchwork landscape of human uses.MethodsWe applied a spatial absorbing Markov chain (SAMC) framework to test hypotheses about landscape connectivity for a federally endangered carnivore, the ocelot (Leopardus pardalis). We modeled landscape connectivity for ocelots based on spatio-temporal trends in habitat use, which we derived using telemetry dataset collected 1982–2017. We compared three increasingly restrictive resistance surfaces to predict trends in landscape connectivity.ResultsOcelot avoidance of high-traffic roads (> 5000 cars/day) largely influenced patterns of predicted connectivity. We simulated connectivity between habitat patches and identified highly connected areas of conservation concern due to proximity to high-traffic roads. Connectivity was greatly influenced by ocelot habitat use rather than resistance scenarios. Further, we found no evidence of connectivity between populations of ocelots, indicating isolation within a fragmented landscape.ConclusionOur spatially-explicit results describing landscape connectivity with respect to roads provides critical information needed for strategic placement of wildlife crossing structures. Wildlife crossing structures for resident ocelots should be placed in areas of relatively high conductance near roads with well-connected habitat on both sides of the road. We describe an approach that leverages long-term habitat use data for examining connectivity and improving landscape permeability.
Journal Article
Human single-neuron activity is modulated by intracranial theta burst stimulation of the basolateral amygdala
2025
Direct electrical stimulation of the human brain has been used for numerous clinical and scientific applications. At present, however, little is known about how intracranial stimulation affects activity at the microscale. In this study, we recorded intracranial EEG data from a cohort of patients with medically refractory epilepsy as they completed a visual recognition memory task. During the memory task, brief trains of intracranial theta burst stimulation (TBS) were delivered to the basolateral amygdala (BLA). Using simultaneous microelectrode recordings, we isolated neurons in the hippocampus, amygdala, orbitofrontal cortex, and anterior cingulate cortex and tested whether stimulation enhanced or suppressed firing rates. Additionally, we characterized the properties of modulated neurons, clustered presumed excitatory and inhibitory neurons by waveform morphology, and examined the extent to which modulation affected memory task performance. We observed a subset of neurons (~30%) whose firing rate was modulated by TBS, exhibiting highly heterogeneous responses with respect to onset latency, duration, and direction of effect. Notably, location and baseline activity predicted which neurons were most susceptible to modulation, although the impact of this neuronal modulation on memory remains unclear. These findings advance our limited understanding of how focal electrical fields influence neuronal firing at the single-cell level.
Journal Article
Type III TGF-β receptor downregulation generates an immunotolerant tumor microenvironment
by
Augustine, Christi
,
Nixon, Andrew
,
Hanks, Brent A.
in
Animals
,
Cell Line, Tumor
,
Chemokine CCL22 - metabolism
2013
Cancers subvert the host immune system to facilitate disease progression. These evolved immunosuppressive mechanisms are also implicated in circumventing immunotherapeutic strategies. Emerging data indicate that local tumor-associated DC populations exhibit tolerogenic features by promoting Treg development; however, the mechanisms by which tumors manipulate DC and Treg function in the tumor microenvironment remain unclear. Type III TGF-β receptor (TGFBR3) and its shed extracellular domain (sTGFBR3) regulate TGF-β signaling and maintain epithelial homeostasis, with loss of TGFBR3 expression promoting progression early in breast cancer development. Using murine models of breast cancer and melanoma, we elucidated a tumor immunoevasion mechanism whereby loss of tumor-expressed TGFBR3/sTGFBR3 enhanced TGF-β signaling within locoregional DC populations and upregulated both the immunoregulatory enzyme indoleamine 2,3-dioxygenase (IDO) in plasmacytoid DCs and the CCL22 chemokine in myeloid DCs. Alterations in these DC populations mediated Treg infiltration and the suppression of antitumor immunity. Our findings provide mechanistic support for using TGF-β inhibitors to enhance the efficacy of tumor immunotherapy, indicate that sTGFBR3 levels could serve as a predictive immunotherapy biomarker, and expand the mechanisms by which TGFBR3 suppresses cancer progression to include effects on the tumor immune microenvironment.
Journal Article
Status and distribution of jaguarundi in Texas and Northeastern México: Making the case for extirpation and initiation of recovery in the United States
by
Scognamillo, Daniel G.
,
Tewes, Michael E.
,
Watts, G. Wesley
in
Biogeography
,
Cameras
,
camera‐trap
2022
The jaguarundi (Puma yagouaroundi) is a small felid with a historical range from central Argentina through southern Texas. Information on the current distribution of this reclusive species is needed to inform recovery strategies in the United States where its last record was in 1986 in Texas. From 2003 to 2021, we conducted camera‐trap surveys across southern Texas and northern Tamaulipas, México to survey for medium‐sized wild cats (i.e., ocelots [Leopardus pardalis], bobcats [Lynx rufus], and jaguarundi). After 350,366 trap nights at 685 camera sites, we did not detect jaguarundis at 16 properties or along 2 highways (1050 km2) in Texas. However, we recorded 126 jaguarundi photographic detections in 15,784 trap nights on 2 properties (125.3 km2) in the northern Sierra of Tamaulipas, Tamaulipas, México. On these properties, latency to detection was 72 trap nights, with a 0.05 probability of detection per day and 0.73 photographic event rate every 100 trap nights. Due to a lack of confirmed class I sightings (e.g., specimen, photograph) in the 18 years of this study, and no other class I observations since 1986 in the United States, we conclude that the jaguarundi is likely extirpated from the United States. Based on survey effort and results from México, we would have expected to detect jaguarundis over the course of the study if still extant in Texas. We recommend that state and federal agencies consider jaguarundis as extirpated from the United States and initiate recovery actions as mandated in the federal jaguarundi recovery plan. These recovery actions include identification of suitable habitat in Texas, identification of robust populations in México, and re‐introduction of the jaguarundi to Texas. From 2003 to 2021, we conducted camera‐trap surveys across southern Texas and northern Tamaulipas, México to survey for wild cats (i.e., jaguarundi, ocelots, bobcats). After 350,366 trap nights at 685 camera sites, we failed to detect jaguarundis at 16 properties and along 2 highways (1050 km2) in Texas, but had 126 detections in Mexico. Due to a lack of confirmed class I sightings (e.g., specimen, photograph) in the 18 years of this study, and no other class I observations or roadkill since 1986, we conclude that the jaguarundi is likely extirpated from the United States.
Journal Article
Human single-neuron activity is modulated by intracranial theta burst stimulation of the basolateral amygdala
2025
Direct electrical stimulation of the human brain has been used for numerous clinical and scientific applications. At present, however, little is known about how intracranial stimulation affects activity at the microscale. In this study, we recorded intracranial EEG data from a cohort of patients with medically refractory epilepsy as they completed a visual recognition memory task. During the memory task, brief trains of intracranial theta burst stimulation (TBS) were delivered to the basolateral amygdala (BLA). Using simultaneous microelectrode recordings, we isolated neurons in the hippocampus, amygdala, orbitofrontal cortex, and anterior cingulate cortex and tested whether stimulation enhanced or suppressed firing rates. Additionally, we characterized the properties of modulated neurons, clustered presumed excitatory and inhibitory neurons by waveform morphology, and examined the extent to which modulation affected memory task performance. We observed a subset of neurons (~30%) whose firing rate was modulated by TBS, exhibiting highly heterogeneous responses with respect to onset latency, duration, and direction of effect. Notably, location and baseline activity predicted which neurons were most susceptible to modulation, although the impact of this neuronal modulation on memory remains unclear. These findings advance our limited understanding of how focal electrical fields influence neuronal firing at the single-cell level.
Journal Article