Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Content Type
      Content Type
      Clear All
      Content Type
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Item Type
    • Is Full-Text Available
    • Subject
    • Country Of Publication
    • Publisher
    • Source
    • Target Audience
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
1,527 result(s) for "Campbell, Peter J"
Sort by:
Rose Henderson : a woman for the people
\"\"This is a much needed biography! Peter Campbell creatively guides us through the life of a woman who left behind no personal papers, diaries or letters. It is a wonderful feat, and makes significant contributions to the history of Canada, women's studies, and Left history\".\" \"Andree Levesque, Department of History, McGill University\"--Jacket.
Somatic mutation in cancer and normal cells
Spontaneously occurring mutations accumulate in somatic cells throughout a person's lifetime. The majority of these mutations do not have a noticeable effect, but some can alter key cellular functions. Early somatic mutations can cause developmental disorders, whereas the progressive accumulation of mutations throughout life can lead to cancer and contribute to aging. Genome sequencing has revolutionized our understanding of somatic mutation in cancer, providing a detailed view of the mutational processes and genes that drive cancer. Yet, fundamental gaps remain in our knowledge of how normal cells evolve into cancer cells. We briefly summarize a number of the lessons learned over 5 years of cancer genome sequencing and discuss their implications for our understanding of cancer progression and aging.
Life histories of myeloproliferative neoplasms inferred from phylogenies
Mutations in cancer-associated genes drive tumour outgrowth, but our knowledge of the timing of driver mutations and subsequent clonal dynamics is limited 1 – 3 . Here, using whole-genome sequencing of 1,013 clonal haematopoietic colonies from 12 patients with myeloproliferative neoplasms, we identified 580,133 somatic mutations to reconstruct haematopoietic phylogenies and determine clonal histories. Driver mutations were estimated to occur early in life, including the in utero period. JAK2 V617F was estimated to have been acquired by 33 weeks of gestation to 10.8 years of age in 5 patients in whom JAK2 V617F was the first event. DNMT3A mutations were acquired by 8 weeks of gestation to 7.6 years of age in 4 patients, and a PPM1D mutation was acquired by 5.8 years of age. Additional genomic events occurred before or following JAK2 V617F acquisition and as independent clonal expansions. Sequential driver mutation acquisition was separated by decades across life, often outcompeting ancestral clones. The mean latency between JAK2 V617F acquisition and diagnosis was 30 years (range 11–54 years). Estimated historical rates of clonal expansion varied substantially (3% to 190% per year), increased with additional driver mutations, and predicted latency to diagnosis. Our study suggests that early driver mutation acquisition and life-long growth and evolution underlie adult myeloproliferative neoplasms, raising opportunities for earlier intervention and a new model for cancer development. Whole-genome sequencing of 1,013 clonal haematopoietic colonies from myeloproliferative neoplasms of 12 individuals reveals haematopoietic phylogenies and indicates that driver mutations are acquired sequentially, starting early in life.
Chromothripsis drives the evolution of gene amplification in cancer
Focal chromosomal amplification contributes to the initiation of cancer by mediating overexpression of oncogenes 1 – 3 , and to the development of cancer therapy resistance by increasing the expression of genes whose action diminishes the efficacy of anti-cancer drugs. Here we used whole-genome sequencing of clonal cell isolates that developed chemotherapeutic resistance to show that chromothripsis is a major driver of circular extrachromosomal DNA (ecDNA) amplification (also known as double minutes) through mechanisms that depend on poly(ADP-ribose) polymerases (PARP) and the catalytic subunit of DNA-dependent protein kinase (DNA-PKcs). Longitudinal analyses revealed that a further increase in drug tolerance is achieved by structural evolution of ecDNAs through additional rounds of chromothripsis. In situ Hi-C sequencing showed that ecDNAs preferentially tether near chromosome ends, where they re-integrate when DNA damage is present. Intrachromosomal amplifications that formed initially under low-level drug selection underwent continuing breakage–fusion–bridge cycles, generating amplicons more than 100 megabases in length that became trapped within interphase bridges and then shattered, thereby producing micronuclei whose encapsulated ecDNAs are substrates for chromothripsis. We identified similar genome rearrangement profiles linked to localized gene amplification in human cancers with acquired drug resistance or oncogene amplifications. We propose that chromothripsis is a primary mechanism that accelerates genomic DNA rearrangement and amplification into ecDNA and enables rapid acquisition of tolerance to altered growth conditions. Chromothripsis—a process during which chromosomes are ‘shattered’—drives the evolution of gene amplification and subsequent drug resistance in cancer cells.
The mutational landscape of normal human endometrial epithelium
All normal somatic cells are thought to acquire mutations, but understanding of the rates, patterns, causes and consequences of somatic mutations in normal cells is limited. The uterine endometrium adopts multiple physiological states over a lifetime and is lined by a gland-forming epithelium 1 , 2 . Here, using whole-genome sequencing, we show that normal human endometrial glands are clonal cell populations with total mutation burdens that increase at about 29 base substitutions per year and that are many-fold lower than those of endometrial cancers. Normal endometrial glands frequently carry ‘driver’ mutations in cancer genes, the burden of which increases with age and decreases with parity. Cell clones with drivers often originate during the first decades of life and subsequently progressively colonize the epithelial lining of the endometrium. Our results show that mutational landscapes differ markedly between normal tissues—perhaps shaped by differences in their structure and physiology—and indicate that the procession of neoplastic change that leads to endometrial cancer is initiated early in life. Whole-genome sequencing of normal human endometrial glands shows that most are clonal cell populations and frequently carry cancer driver mutations that occur early in life, and that parity has a protective effect.
The landscape of somatic mutation in normal colorectal epithelial cells
The colorectal adenoma–carcinoma sequence has provided a paradigmatic framework for understanding the successive somatic genetic changes and consequent clonal expansions that lead to cancer 1 . However, our understanding of the earliest phases of colorectal neoplastic changes—which may occur in morphologically normal tissue—is comparatively limited, as for most cancer types. Here we use whole-genome sequencing to analyse hundreds of normal crypts from 42 individuals. Signatures of multiple mutational processes were revealed; some of these were ubiquitous and continuous, whereas others were only found in some individuals, in some crypts or during certain periods of life. Probable driver mutations were present in around 1% of normal colorectal crypts in middle-aged individuals, indicating that adenomas and carcinomas are rare outcomes of a pervasive process of neoplastic change across morphologically normal colorectal epithelium. Colorectal cancers exhibit substantially increased mutational burdens relative to normal cells. Sequencing normal colorectal cells provides quantitative insights into the genomic and clonal evolution of cancer. Genome sequencing of hundreds of normal colonic crypts from 42 individuals sheds light on mutational processes and driver mutations in normal colorectal epithelial cells.
Population dynamics of normal human blood inferred from somatic mutations
Haematopoietic stem cells drive blood production, but their population size and lifetime dynamics have not been quantified directly in humans. Here we identified 129,582 spontaneous, genome-wide somatic mutations in 140 single-cell-derived haematopoietic stem and progenitor colonies from a healthy 59-year-old man and applied population-genetics approaches to reconstruct clonal dynamics. Cell divisions from early embryogenesis were evident in the phylogenetic tree; all blood cells were derived from a common ancestor that preceded gastrulation. The size of the stem cell population grew steadily in early life, reaching a stable plateau by adolescence. We estimate the numbers of haematopoietic stem cells that are actively making white blood cells at any one time to be in the range of 50,000–200,000. We observed adult haematopoietic stem cell clones that generate multilineage outputs, including granulocytes and B lymphocytes. Harnessing naturally occurring mutations to report the clonal architecture of an organ enables the high-resolution reconstruction of somatic cell dynamics in humans. Analysis of blood from a healthy human show that haematopoietic stem cells increase rapidly in numbers through early life, reaching a stable plateau in adulthood, and contribute to myeloid and B lymphocyte populations throughout life.
Genomic Classification and Prognosis in Acute Myeloid Leukemia
The authors identify 11 discrete genetic subsets of acute myeloid leukemia on the basis of the expression and coexpression of particular mutations. Prospective studies may elucidate distinct approaches to their management. Acute myeloid leukemia (AML) is characterized by clonal expansion of undifferentiated myeloid precursors, resulting in impaired hematopoiesis and bone marrow failure. Although many patients with AML have a response to induction chemotherapy, refractory disease is common, and relapse represents the major cause of treatment failure. 1 Cancer develops from somatically acquired driver mutations, which account for the myriad biologic and clinical complexities of the disease. A classification of cancers that is based on causality is likely to be durable, reproducible, and clinically relevant. This is already evident in the case of AML, for which there has been a progressive shift from . . .
High burden and pervasive positive selection of somatic mutations in normal human skin
How somatic mutations accumulate in normal cells is central to understanding cancer development but is poorly understood. We performed ultradeep sequencing of 74 cancer genes in small (0.8 to 4.7 square millimeters) biopsies of normal skin. Across 234 biopsies of sun-exposed eyelid epidermis from four individuals, the burden of somatic mutations averaged two to six mutations per megabase per cell, similar to that seen in many cancers, and exhibited characteristic signatures of exposure to ultraviolet light. Remarkably, multiple cancer genes are under strong positive selection even in physiologically normal skin, including most of the key drivers of cutaneous squamous cell carcinomas. Positively selected mutations were found in 18 to 32% of normal skin cells at a density of ∼140 driver mutations per square centimeter. We observed variability in the driver landscape among individuals and variability in the sizes of clonal expansions across genes. Thus, aged sun-exposed skin is a patchwork of thousands of evolving clones with over a quarter of cells carrying cancer-causing mutations while maintaining the physiological functions of epidermis.