Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
191 result(s) for "Camps, Carlos"
Sort by:
Perioperative Nivolumab and Chemotherapy in Stage III Non–Small-Cell Lung Cancer
In patients with lung cancer, neoadjuvant treatment with nivolumab and chemotherapy resulted in a significantly higher percentage of patients with a pathological complete response than chemotherapy alone.
Cannabinoid receptor expression in non-small cell lung cancer. Effectiveness of tetrahydrocannabinol and cannabidiol inhibiting cell proliferation and epithelial-mesenchymal transition in vitro
Patients with non-small cell lung cancer (NSCLC) develop resistance to antitumor agents by mechanisms that involve the epithelial-to-mesenchymal transition (EMT). This necessitates the development of new complementary drugs, e.g., cannabinoid receptors (CB1 and CB2) agonists including tetrahydrocannabinol (THC) and cannabidiol (CBD). The combined use of THC and CBD confers greater benefits, as CBD enhances the effects of THC and reduces its psychotropic activity. We assessed the relationship between the expression levels of CB1 and CB2 to the clinical features of a cohort of patients with NSCLC, and the effect of THC and CBD (individually and in combination) on proliferation, EMT and migration in vitro in A549, H460 and H1792 lung cancer cell lines. Expression levels of CB1, CB2, EGFR, CDH1, CDH2 and VIM were evaluated by quantitative reverse transcription-polymerase chain reaction. THC and CBD (10-100 μM), individually or in combination (1:1 ratio), were used for in vitro assays. Cell proliferation was determined by BrdU incorporation assay. Morphological changes in the cells were visualized by phase-contrast and fluorescence microscopy. Migration was studied by scratch recolonization induced by 20 ng/ml epidermal growth factor (EGF). The tumor samples were classified according to the level of expression of CB1, CB2, or both. Patients with high expression levels of CB1, CB2, and CB1/CB2 showed increased survival reaching significance for CB1 and CB1/CB2 (p = 0.035 and 0.025, respectively). Both cannabinoid agonists inhibited the proliferation and expression of EGFR in lung cancer cells, and CBD potentiated the effect of THC. THC and CBD alone or in combination restored the epithelial phenotype, as evidenced by increased expression of CDH1 and reduced expression of CDH2 and VIM, as well as by fluorescence analysis of cellular cytoskeleton. Finally, both cannabinoids reduced the in vitro migration of the three lung cancer cells lines used. The expression levels of CB1 and CB2 have a potential use as markers of survival in patients with NSCLC. THC and CBD inhibited the proliferation and expression of EGFR in the lung cancer cells studied. Finally, the THC/CBD combination restored the epithelial phenotype in vitro.
Programmed Death-Ligand 1 (PD-L1) as Immunotherapy Biomarker in Breast Cancer
Breast cancer constitutes the most common malignant neoplasm in women around the world. Approximately 12% of patients are diagnosed with metastatic stage, and between 5 and 30% of early or locally advanced BC patients will relapse, making it an incurable disease. PD-L1 ligation is an immune inhibitory molecule of the activation of T cells, playing a relevant role in numerous types of malignant tumors, including BC. The objective of the present review is to analyze the role of PD-L1 as a biomarker in the different BC subtypes, adding clinical trials with immune checkpoint inhibitors and their applicable results. Diverse trials using immunotherapy with anti-PD-1/PD-L1 in BC, as well as prospective or retrospective cohort studies about PD-L1 in BC, were included. Despite divergent results in the reviewed studies, PD-L1 seems to be correlated with worse prognosis in the hormone receptor positive subtype. Immune checkpoints inhibitors targeting the PD-1/PD-L1 axis have achieved great response rates in TNBC patients, especially in combination with chemotherapy, making immunotherapy a new treatment option in this scenario. However, the utility of PD-L1 as a predictive biomarker in the rest of BC subtypes remains unclear. In addition, predictive differences have been found in response to immunotherapy depending on the stage of the tumor disease. Therefore, a better understanding of tumor microenvironment, as well as identifying new potential biomarkers or combined index scores, is necessary in order to make a better selection of the subgroups of BC patients who will derive benefit from immune checkpoint inhibitors.
Reflections on the Origin of Coded Protein Biosynthesis
The principle of continuity posits that some central features of primordial biocatalytic mechanisms should still be present in the genetically dependent pathway of protein synthesis, a crucial step in the emergence of life. Key bimolecular reactions of this process are catalyzed by DNA-dependent RNA polymerases, aminoacyl-tRNA synthetases, and ribosomes. Remarkably, none of these biocatalysts contribute chemically active groups to their respective reactions. Instead, structural and functional studies have demonstrated that nucleotidic α-phosphate and β-d-ribosyl 2′ OH and 3′ OH groups can help their own catalysis, a process which, consequently, has been called “substrate-assisted”. Furthermore, upon binding, the substrates significantly lower the entropy of activation, exclude water from these catalysts’ active sites, and are readily positioned for a reaction. This binding mode has been described as an “entropy trap”. The combination of this effect with substrate-assisted catalysis results in reactions that are stereochemically and mechanistically simpler than the ones found in most modern enzymes. This observation is consistent with the way in which primordial catalysts could have operated; it may also explain why, thanks to their complementary reactivities, β-d-ribose and phosphate were naturally selected to be the central components of early coding polymers.
Prospective multicenter real-world RAS mutation comparison between OncoBEAM-based liquid biopsy and tissue analysis in metastatic colorectal cancer
BackgroundLiquid biopsy offers a minimally invasive alternative to tissue-based evaluation of mutational status in cancer. The goal of the present study was to evaluate the aggregate performance of OncoBEAM RAS mutation analysis in plasma of colorectal cancer (CRC) patients at 10 hospital laboratories in Spain where this technology is routinely implemented.MethodsCirculating cell-free DNA from plasma was examined for RAS mutations using the OncoBEAM platform at each hospital laboratory. Results were then compared to those obtained from DNA extracted from tumour tissue from the same patient.ResultsThe overall percentage agreement between plasma-based and tissue-based RAS mutation testing of the 236 participants was 89% (210/236; kappa, 0.770 (95% CI: 0.689–0.852)). Re-analysis of tissue from all discordant cases by BEAMing revealed two false negative and five false positive tumour tissue RAS results, with a final concordance of 92%. Plasma false negative results were found more frequently in patients with exclusive lung metastatic disease.ConclusionsIn this first prospective real-world RAS mutation performance comparison study, a high overall agreement was observed between results obtained from plasma and tissue samples. Overall, these findings indicate that the plasma-based BEAMing assay is a viable solution for rapid delivery of RAS mutation status to determine mCRC patient eligibility for anti-EGFR therapy.
Screening for Epidermal Growth Factor Receptor Mutations in Lung Cancer
Lung cancers with a mutation in the EGFR gene have heightened sensitivity to tyrosine kinase inhibitors. Asian patients have been the most intensively studied population for such mutations and for responsiveness to tyrosine kinase inhibitors. This study shows that large-scale screening for EGFR mutations in a European population is feasible and can influence decisions about treatment of advanced lung cancer. This study shows that large-scale screening for EGFR mutations in a European population is feasible and can influence decisions about treatment of advanced lung cancer. Molecular-profiling studies indicate that activating mutations in the epidermal growth factor receptor ( EGFR ), PI3K , BRAF, and K-ras genes are generally nonoverlapping and identifiable in approximately 40% of non–small-cell lung cancers. These mutations, plus others that contribute to tumor progression (“driver” mutations), can be found in almost half of all non–small-cell lung cancers. 1 , 2 The two proto-oncogenes that are most commonly mutated in pulmonary adenocarcinomas are K-ras and EGFR . Nearly 90% of lung-cancer–specific EGFR mutations comprise a leucine-to-arginine substitution at position 858 (L858R) and deletion mutants in exon 19 that affect the conserved sequence LREA (delE746-A750). 3 – . . .
Refining the role of pegfilgrastim (a long-acting G-CSF) for prevention of chemotherapy-induced febrile neutropenia: consensus guidance recommendations
Purpose Chemotherapy-induced febrile neutropenia (FN) causes treatment delays and interruptions and can have fatal consequences. Current guidelines provide recommendations on granulocyte colony-stimulating factors (G-CSF) for prevention of FN, but guidance is unclear regarding use of short- vs long-acting G-CSF (e.g., filgrastim vs pegfilgrastim/lipegfilgrastim, respectively). An international panel of experts convened to develop guidance on appropriate use of pegfilgrastim for prevention of chemotherapy-induced FN. Methods Guidance recommendations were developed following a literature review, survey, evaluation of current practice, and an expert meeting. Consensus was established using an anonymous Delphi-based approach. Results Guidance recommendations for prevention of treatment-associated FN were as follows: for treatment with curative intent, maintenance of dose intensity using G-CSF to prevent dose delays/reduction should be standard of care; for treatment-associated FN risk ≥ 20%, short-acting G-CSF/pegfilgrastim should be given from cycle 1 onwards; and for treatment-associated FN risk < 20%, short-acting G-CSF/pegfilgrastim should be given if factors suggest overall risk (including treatment-related and patient-related risk factors) is ≥ 20%. It was agreed that pegfilgrastim and 11 days’ filgrastim have similar efficacy and safety and that pegfilgrastim is preferred to < 11 days’ filgrastim (and may be preferred to ≥ 11 days’ filgrastim based on adherence and convenience); pegfilgrastim is not appropriate in weekly chemotherapy; in split-dose chemotherapy, pegfilgrastim is recommended 24 h after last chemotherapy dose; and during palliative chemotherapy, patient adherence and convenience may favor pegfilgrastim. Conclusion In this era of targeted therapies, additional trials with G-CSF are still required. These recommendations should be used with existing guidelines to optimize pegfilgrastim use in clinical practice.
Update on systemic treatment in early triple negative breast cancer
Triple negative breast cancer (TNBC) is a heterogeneous disease representing about 15% of all breast cancers. TNBC are usually high-grade histological tumors, and are generally more aggressive and difficult to treat due to the lack of targeted therapies available, and chemotherapy remains the standard treatment. There is a close relationship between pathological complete response after chemotherapy treatment and higher rates of disease-free survival and overall survival. In this review of systemic treatment in early triple negative breast cancer, our purpose is to analyze and compare different therapies, as well as to highlight the novelties of treatment in this breast cancer subtype.
KRAS-mutant non-small cell lung cancer (NSCLC) therapy based on tepotinib and omeprazole combination
Background KRAS- mutant non-small cell lung cancer (NSCLC) shows a relatively low response rate to chemotherapy, immunotherapy and KRAS -G12C selective inhibitors, leading to short median progression-free survival, and overall survival. The MET receptor tyrosine kinase (c- MET ), the cognate receptor of hepatocyte growth factor (HGF), was reported to be overexpressed in KRAS -mutant lung cancer cells leading to tumor-growth in anchorage-independent conditions. Methods Cell viability assay and synergy analysis were carried out in native, sotorasib and trametinib-resistant KRAS -mutant NSCLC cell lines. Colony formation assays and Western blot analysis were also performed. RNA isolation from tumors of KRAS -mutant NSCLC patients was performed and KRAS and MET mRNA expression was determined by real-time RT-qPCR. In vivo studies were conducted in NSCLC (NCI-H358) cell-derived tumor xenograft model. Results Our research has shown promising activity of omeprazole, a V-ATPase-driven proton pump inhibitor with potential anti-cancer properties, in combination with the MET inhibitor tepotinib in KRAS -mutant G12C and non-G12C NSCLC cell lines, as well as in G12C inhibitor (AMG510, sotorasib) and MEK inhibitor (trametinib)-resistant cell lines. Moreover, in a xenograft mouse model, combination of omeprazole plus tepotinib caused tumor growth regression. We observed that the combination of these two drugs downregulates phosphorylation of the glycolytic enzyme enolase 1 (ENO1) and the low-density lipoprotein receptor-related protein (LRP) 5/6 in the H358 KRAS G12C cell line, but not in the H358 sotorasib resistant, indicating that the effect of the combination could be independent of ENO1. In addition, we examined the probability of recurrence-free survival and overall survival in 40 early lung adenocarcinoma patients with KRAS G12C mutation stratified by KRAS and MET mRNA levels. Significant differences were observed in recurrence-free survival according to high levels of KRAS mRNA expression. Hazard ratio (HR) of recurrence-free survival was 7.291 ( p  = 0.014) for high levels of KRAS mRNA expression and 3.742 ( p  = 0.052) for high MET mRNA expression. Conclusions We posit that the combination of the V-ATPase inhibitor omeprazole plus tepotinib warrants further assessment in KRAS -mutant G12C and non G12C cell lines, including those resistant to the covalent KRAS G12C inhibitors.
MicroRNAs : Promising New Antiangiogenic Targets in Cancer
MicroRNAs are one class of small, endogenous, non-coding RNAs that are approximately 22 nucleotides in length; they are very numerous, have been phylogenetically conserved, and involved in biological processes such as development, differentiation, cell proliferation, and apoptosis. MicroRNAs contribute to modulating the expression levels of specific proteins based on sequence complementarity with their target mRNA molecules and so they play a key role in both health and disease. Angiogenesis is the process of new blood vessel formation from preexisting ones, which is particularly relevant to cancer and its progression. Over the last few years, microRNAs have emerged as critical regulators of signalling pathways in multiple cell types including endothelial and perivascular cells. This review summarises the role of miRNAs in tumour angiogenesis and their potential implications as therapeutic targets in cancer.