Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
193
result(s) for
"Canadell, J"
Sort by:
Persistent fossil fuel growth threatens the Paris Agreement and planetary health
2019
Amidst declarations of planetary emergency and reports that the window for limiting climate change to 1.5 °C is rapidly closing, global average temperatures and fossil fuel emissions continue to rise. Global fossil CO2 emissions have grown three years consecutively: +1.5% in 2017, +2.1% in 2018, and our slower central projection of +0.6% in 2019 (range of -0.32% to 1.5%) to 37 2 Gt CO2 (Friedlingstein et al 2019 Earth Syst. Sci. Data accepted), after a temporary growth hiatus from 2014 to 2016. Economic indicators and trends in global natural gas and oil use suggest a further rise in emissions in 2020 is likely. CO2 emissions are decreasing slowly in many industrialized regions, including the European Union (preliminary estimate of −1.7% [-3.4% to +0.1%] for 2019, −0.8%/yr for 2003-2018) and United States (−1.7% [-3.7% to +0.3%] in 2019, −0.8%/yr for 2003-2018), while emissions continue growing in India (+1.8% [+0.7% to 3.7%] in 2019, +5.1%/yr for 2003-2018), China (+2.6% [+0.7% to 4.4%] in 2019, +0.4%/yr for 2003-2018), and rest of the world ((+0.5% [−0.8% to 1.8%] in 2019, +1.4%/yr for 2003-2018). Two under-appreciated trends suggest continued long-term growth in both oil and natural gas use is likely. Because per capita oil consumption in the US and Europe remains 5- to 20-fold higher than in China and India, increasing vehicle ownership and air travel in Asia are poised to increase global CO2 emissions from oil over the next decade or more. Liquified natural gas exports from Australia and the United States are surging, lowering natural gas prices in Asia and increasing global access to this fossil resource. To counterbalance increasing emissions, we need accelerated energy efficiency improvements and reduced consumption, rapid deployment of electric vehicles, carbon capture and storage technologies, and a decarbonized electricity grid, with new renewable capacities replacing fossil fuels, not supplementing them. Stronger global commitments and carbon pricing would help implement such policies at scale and in time.
Journal Article
Acceleration of global N2O emissions seen from two decades of atmospheric inversion
by
Thompson, R L
,
Tian, H
,
Patra, P K
in
Acceleration
,
Agricultural management
,
Agricultural practices
2019
Nitrous oxide (N2O) is the third most important long-lived GHG and an important stratospheric ozone depleting substance. Agricultural practices and the use of N-fertilizers have greatly enhanced emissions of N2O. Here, we present estimates of N2O emissions determined from three global atmospheric inversion frameworks during the period 1998–2016. We find that global N2O emissions increased substantially from 2009 and at a faster rate than estimated by the IPCC emission factor approach. The regions of East Asia and South America made the largest contributions to the global increase. From the inversion-based emissions, we estimate a global emission factor of 2.3 ± 0.6%, which is significantly larger than the IPCC Tier-1 default for combined direct and indirect emissions of 1.375%. The larger emission factor and accelerating emission increase found from the inversions suggest that N2O emission may have a nonlinear response at global and regional scales with high levels of N-input.
Journal Article
Increasing anthropogenic methane emissions arise equally from agricultural and fossil fuel sources
by
Bergamaschi, P
,
Segers, A
,
Jackson, R B
in
Anthropogenic factors
,
Earth Resources And Remote Sensing
,
Fossil fuels
2020
Climate stabilization remains elusive, with increased greenhouse gas concentrations already increasing global average surface temperatures 1.1°C above pre-industrial levels (World Meteorological Organization 2019). Carbon dioxide (CO2) emissions from fossil fuel use, deforestation, and other anthropogenic sources reached ~ 43 billion metric tonnes in 2019 (Friedlingstein et al 2019, Jackson et al 2019). Storms, floods, and other extreme weather events displaced a record 7 million people in the first half of 2019 (IDMC 2019). When global mean surface temperature four million years ago was 2°C–3°C warmer than today (a likely temperature increase before the end of the century), ice sheets in Greenland and West Antarctica melted and parts of East Antarctica’s ice retreated, causing sea levels to rise 10–20 m (World Meteorological Organization 2019).
Methane (CH4) emissions have contributed almost one quarter of the cumulative radiative forcings for CO2, CH4, and N2O (nitrous oxide) combined since 1750 (Etminan et al 2016). Although methane is far less abundant in the atmosphere than CO2, it absorbs thermal infrared radiation much
more efficiently and, in consequence, has a global warming potential (GWP) ~86 times stronger per unit mass than CO2 on a 20-year timescale and 28-
times more powerful on a 100-year time scale (IPCC 2014).
Global average methane concentrations in the atmosphere reached ~1875 parts per billion (ppb) at the end of 2019, more than two-and-a-half times
preindustrial levels (Dlugokencky 2020). The largest methane sources include anthropogenic emissions from agriculture, waste, and the extraction and use of fossil fuels as well as natural emissions from wetlands, freshwater systems, and geological sources (Kirschke et al 2013, Saunois et al 2016a, Ganesan et al 2019). Here, we summarize new estimates of the global methane budget based on the analysis of Saunois et al (2020) for the year 2017, the last year of the new Global Methane Budget and the most recent year data are fully available. We compare these estimates to mean values for the reference ‘stabilization’ period of 2000–2006 when atmospheric CH4 concentrations were relatively stable. We present data for sources and sinks and provide insights for the geographical regions and economic sectors where emissions have changed the most over recent decades.
Journal Article
Recent trends and drivers of regional sources and sinks of carbon dioxide
2015
The land and ocean absorb on average just over half of the anthropogenic emissions of carbon dioxide (CO2) every year. These CO2 \"sinks\" are modulated by climate change and variability. Here we use a suite of nine dynamic global vegetation models (DGVMs) and four ocean biogeochemical general circulation models (OBGCMs) to estimate trends driven by global and regional climate and atmospheric CO2 in land and oceanic CO2 exchanges with the atmosphere over the period 1990–2009, to attribute these trends to underlying processes in the models, and to quantify the uncertainty and level of inter-model agreement. The models were forced with reconstructed climate fields and observed global atmospheric CO2; land use and land cover changes are not included for the DGVMs. Over the period 1990–2009, the DGVMs simulate a mean global land carbon sink of −2.4 ± 0.7 Pg C yr−1 with a small significant trend of −0.06 ± 0.03 Pg C yr−2 (increasing sink). Over the more limited period 1990–2004, the ocean models simulate a mean ocean sink of −2.2 ± 0.2 Pg C yr−1 with a trend in the net C uptake that is indistinguishable from zero (−0.01 ± 0.02 Pg C yr−2). The two ocean models that extended the simulations until 2009 suggest a slightly stronger, but still small, trend of −0.02 ± 0.01 Pg C yr−2. Trends from land and ocean models compare favourably to the land greenness trends from remote sensing, atmospheric inversion results, and the residual land sink required to close the global carbon budget. Trends in the land sink are driven by increasing net primary production (NPP), whose statistically significant trend of 0.22 ± 0.08 Pg C yr−2 exceeds a significant trend in heterotrophic respiration of 0.16 ± 0.05 Pg C yr−2 – primarily as a consequence of widespread CO2 fertilisation of plant production. Most of the land-based trend in simulated net carbon uptake originates from natural ecosystems in the tropics (−0.04 ± 0.01 Pg C yr−2), with almost no trend over the northern land region, where recent warming and reduced rainfall offsets the positive impact of elevated atmospheric CO2 and changes in growing season length on carbon storage. The small uptake trend in the ocean models emerges because climate variability and change, and in particular increasing sea surface temperatures, tend to counter\\\-act the trend in ocean uptake driven by the increase in atmospheric CO2. Large uncertainty remains in the magnitude and sign of modelled carbon trends in several regions, as well as regarding the influence of land use and land cover changes on regional trends.
Journal Article
The growing role of methane in anthropogenic climate change
by
Bousquet, P
,
Jackson, R B
,
Saunois, M
in
Anthropogenic factors
,
Carbon dioxide
,
Climate change
2016
Unlike CO2, atmospheric methane concentrations are rising faster than at any time in the past two decades and, since 2014, are now approaching the most greenhouse-gas-intensive scenarios. The reasons for this renewed growth are still unclear, primarily because of uncertainties in the global methane budget. New analysis suggests that the recent rapid rise in global methane concentrations is predominantly biogenic-most likely from agriculture-with smaller contributions from fossil fuel use and possibly wetlands. Additional attention is urgently needed to quantify and reduce methane emissions. Methane mitigation offers rapid climate benefits and economic, health and agricultural co-benefits that are highly complementary to CO2 mitigation.
Journal Article
Global fossil carbon emissions rebound near pre-COVID-19 levels
by
Liu, Zhu
,
Jackson, R B
,
Davis, S J
in
Carbon dioxide
,
Carbon dioxide emissions
,
climate change
2022
Fossil CO
2
emissions in 2021 grew an estimated 4.2% (3.5%–4.8%) to 36.2 billion metric tons compared with 2020, pushing global emissions back close to 2019 levels (36.7 Gt CO
2
).
Journal Article
Global trends in carbon sinks and their relationships with CO2 and temperature
by
Piao, S L
,
Obersteiner, M
,
Canadell, J G
in
Atmospheric models
,
Carbon dioxide
,
Carbon dioxide concentration
2019
Global net ecosystem production (NEP) from a number of atmospheric inversions and dynamic global vegetation models is analysed to attribute trends to potential drivers. CO2 is found to have a positive effect on NEP that is constrained by climate warming.
Journal Article
Five Decades of Northern Land Carbon Uptake Revealed by the Interhemispheric CO2 Gradient
2019
The global land and ocean carbon sinks have increased proportionally with increasing carbon dioxide emissions during the past decades. It is thought that Northern Hemisphere lands make a dominant contribution to the global land carbon sink; however, the long-term trend of the northern land sink remains uncertain. Here, using measurements of the interhemispheric gradient of atmospheric carbon dioxide from 1958 to 2016, we show that the northern land sink remained stable between the 1960s and the late 1980s, then increased by 0.5 ± 0.4 petagrams of carbon per year during the 1990s and by 0.6 ± 0.5 petagrams of carbon per year during the 2000s. The increase of the northern land sink in the 1990s accounts for 65% of the increase in the global land carbon flux during that period. The subsequent increase in the 2000s is larger than the increase in the global land carbon flux, suggesting a coincident decrease of carbon uptake in the Southern Hemisphere. Comparison of our findings with the simulations of an ensemble of terrestrial carbon models over the same period suggests that the decadal change in the northern land sink between the 1960s and the 1990s can be explained by a combination of increasing concentrations of atmospheric carbon dioxide, climate variability and changes in land cover. However, the increase during the 2000s is underestimated by all models, which suggests the need for improved consideration of changes in drivers such as nitrogen deposition, diffuse light and land-use change. Overall, our findings underscore the importance of Northern Hemispheric land as a carbon sink.
Journal Article
Research priorities for negative emissions
by
Yamagata, Y
,
Kraxner, F
,
Jackson, R B
in
1.5 C
,
1.5 C; carbon dioxide removal; climate change; negative emissions; Paris Agreement; sustainability; Renewable Energy, Sustainability and the Environment; 2300; Public Health, Environmental and Occupational Health
,
Carbon dioxide
2016
Carbon dioxide removal from the atmosphere (CDR)-also known as 'negative emissions'-features prominently in most 2 °C scenarios and has been under increased scrutiny by scientists, citizens, and policymakers. Critics argue that 'negative emission technologies' (NETs) are insufficiently mature to rely on them for climate stabilization. Some even argue that 2 °C is no longer feasible or might have unacceptable social and environmental costs. Nonetheless, the Paris Agreement endorsed an aspirational goal of limiting global warming to even lower levels, arguing that climate impacts-especially for vulnerable nations such as small island states-will be unacceptably severe in a 2 °C world. While there are few pathways to 2 °C that do not rely on negative emissions, 1.5 °C scenarios are barely conceivable without them. Building on previous assessments of NETs, we identify some urgent research needs to provide a more complete picture for reaching ambitious climate targets, and the role that NETs can play in reaching them.
Journal Article
Global energy growth is outpacing decarbonization
2018
Recent reports have highlighted the challenge of keeping global average temperatures below 2 °C and-even more so-1.5 °C (IPCC 2018). Fossil-fuel burning and cement production release ∼90% of all CO2 emissions from human activities. After a three-year hiatus with stable global emissions (Jackson et al 2016; Le Quéré C et al 2018a ; IEA 2018), CO2 emissions grew by 1.6% in 2017 to 36.2 Gt (billion tonnes), and are expected to grow a further 2.7% in 2018 (range: 1.8%-3.7%) to a record 37.1 2 Gt CO2 (Le Quéré et al 2018b). Additional increases in 2019 remain uncertain but appear likely because of persistent growth in oil and natural gas use and strong growth projected for the global economy. Coal use has slowed markedly in the last few years, potentially peaking, but its future trajectory remains uncertain. Despite positive progress in ∼19 countries whose economies have grown over the last decade and their emissions have declined, growth in energy use from fossil-fuel sources is still outpacing the rise of low-carbon sources and activities. A robust global economy, insufficient emission reductions in developed countries, and a need for increased energy use in developing countries where per capita emissions remain far below those of wealthier nations will continue to put upward pressure on CO2 emissions. Peak emissions will occur only when total fossil CO2 emissions finally start to decline despite growth in global energy consumption, with fossil energy production replaced by rapidly growing low- or no-carbon technologies.
Journal Article