Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
11 result(s) for "Canini, Matteo"
Sort by:
In search of different categories of abstract concepts: a fMRI adaptation study
Concrete conceptual knowledge is supported by a distributed neural network representing different semantic features according to the neuroanatomy of sensory and motor systems. If and how this framework applies to abstract knowledge is currently debated. Here we investigated the specific brain correlates of different abstract categories. After a systematic a priori selection of brain regions involved in semantic cognition, i.e. responsible of, respectively, semantic representations and cognitive control, we used a fMRI-adaptation paradigm with a passive reading task, in order to modulate the neural response to abstract (emotions, cognitions, attitudes, human actions) and concrete (biological entities, artefacts) categories. Different portions of the left anterior temporal lobe responded selectively to abstract and concrete concepts. Emotions and attitudes adapted the left middle temporal gyrus, whereas concrete items adapted the left fusiform gyrus. Our results suggest that, similarly to concrete concepts, some categories of abstract knowledge have specific brain correlates corresponding to the prevalent semantic dimensions involved in their representation.
Prenatal brain connectivity and postnatal language: how familial risk and prenatal speech exposure shape early language skills
The maturation of the auditory-language brain network begins before birth, driven by gene-environment interactions. We investigated the association between familial and environmental factors and the foetal development of this network, as well as the predictive value of this association for postnatal language outcomes. Using prenatal resting-state fMRI, we examined 25 foetuses to identify functional connectivity within the auditory-language network. Postnatal language was assessed longitudinally between 1 and 3 years using the Bayley-III scale. Familial risk for language disorders and prenatal speech exposure were quantified using a newly developed questionnaire. First, hierarchical clustering on foetal functional connectivity confirmed that an auditory-language network can be identified in the foetal brain. In this network, foetuses with higher speech exposure exhibited increased connectivity between left-hemisphere regions and decreased connectivity between homologous right-hemisphere regions. Higher familial risk was linked to reduced connectivity within the left language network. Regression analyses revealed that prenatal functional connectivity between insula, caudate nucleus, and rolandic operculum significantly predicted postnatal language. These findings underscore the critical role of genetic and environmental influences in functionally shaping the foetal auditory-language network, with lasting impacts on early language development. By integrating prenatal brain connectivity, familial risk, and speech exposure, this study provides new insights into prenatal language neurodevelopment, highlighting its importance for future language capabilities.
A hierarchical procedure to select intrauterine and extrauterine factors for methodological validation of preterm birth risk estimation
Background Etiopathogenesis of preterm birth (PTB) is multifactorial, with a universe of risk factors interplaying between the mother and the environment. It is of utmost importance to identify the most informative factors in order to estimate the degree of PTB risk and trace an individualized profile. The aims of the present study were: 1) to identify all acknowledged risk factors for PTB and to select the most informative ones for defining an accurate model of risk prediction; 2) to verify predictive accuracy of the model and 3) to identify group profiles according to the degree of PTB risk based on the most informative factors. Methods The Maternal Frailty Inventory (MaFra) was created based on a systematic review of the literature including 174 identified intrauterine (IU) and extrauterine (EU) factors. A sample of 111 pregnant women previously categorized in low or high risk for PTB below 37 weeks, according to ACOG guidelines, underwent the MaFra Inventory. First, univariate logistic regression enabled p -value ordering and the Akaike Information Criterion (AIC) selected the model including the most informative MaFra factors. Second, random forest classifier verified the overall predictive accuracy of the model. Third, fuzzy c-means clustering assigned group membership based on the most informative MaFra factors. Results The most informative and parsimonious model selected through AIC included Placenta Previa, Pregnancy Induced Hypertension, Antibiotics, Cervix Length, Physical Exercise, Fetal Growth, Maternal Anxiety, Preeclampsia, Antihypertensives. The random forest classifier including only the most informative IU and EU factors achieved an overall accuracy of 81.08% and an AUC of 0.8122. The cluster analysis identified three groups of typical pregnant women, profiled on the basis of the most informative IU and EU risk factors from a lower to a higher degree of PTB risk, which paralleled time of birth delivery. Conclusions This study establishes a generalized methodology for building-up an evidence-based holistic risk assessment for PTB to be used in clinical practice. Relevant and essential factors were selected and were able to provide an accurate estimation of degree of PTB risk based on the most informative constellation of IU and EU factors.
The Neurodevelopmental Dynamics of Multilingual Experience During Childhood: A Longitudinal Behavioral, Structural, and Functional MRI Study
Background/Objectives: A neurobiological framework of bi- or multilingual neurocognitive development must consider the following: (i) longitudinal behavioral and neural measures; (ii) brain developmental constraints across structure and function; and (iii) the development of global multilingual competence in a homogeneous social environment. In this study, we investigated whether multilingual competence yields early changes in executive attention control mechanisms and their underlying neural structures in the frontal–striatal system, such as the dorsal anterior cingulate cortex/pre-supplemental area and the left caudate. Methods: We employed longitudinal neuroimaging and functional connectivity methods in a small group of multilingual children over two years. Results: We found that the dACC/preSMA is functionally influenced by changes in multilingual competence but not yet structurally adapted, while the left caudate, in a developmental stage, is influenced, adapts, and specializes due to multilingual experience. Furthermore, increases in multilingual competence strengthen connections between the dACC/preSMA, left caudate, and other structures of the cognitive control network, such as the right inferior frontal gyrus and bilateral inferior parietal lobules. Conclusions: These findings suggest that multilingual competence impacts brain “adaptation” and “specialization” during childhood. The results may provide insights and guide future research on experience-expectant and experience-dependent brain plasticity to explain the “interaction” between multilingualism and neurodevelopment.
The left inferior frontal gyrus: A neural crossroads between abstract and concrete knowledge
Evidence from both neuropsychology and neuroimaging suggests that different types of information are necessary for representing and processing concrete and abstract word meanings. Both abstract and concrete concepts, however, conjointly rely on perceptual, verbal and contextual knowledge, with abstract concepts characterized by low values of imageability (IMG) (low sensory-motor grounding) and low context availability (CA) (more difficult to contextualize). Imaging studies supporting differences between abstract and concrete concepts show a greater recruitment of the left inferior frontal gyrus (LIFG) for abstract concepts, which has been attributed either to the representation of abstract-specific semantic knowledge or to the request for more executive control than in the case of concrete concepts. We conducted an fMRI study on 27 participants, using a lexical decision task involving both abstract and concrete words, whose IMG and CA values were explicitly modelled in separate parametric analyses. The LIFG was significantly more activated for abstract than for concrete words, and a conjunction analysis showed a common activation for words with low IMG or low CA only in the LIFG, in the same area reported for abstract words. A regional template map of brain activations was then traced for words with low IMG or low CA, and BOLD regional time-series were extracted and correlated with the specific LIFG neural activity elicited for abstract words. The regions associated to low IMG, which were functionally correlated with LIFG, were mainly in the left hemisphere, while those associated with low CA were in the right hemisphere. Finally, in order to reveal which LIFG-related network increased its connectivity with decreases of IMG or CA, we conducted generalized psychophysiological interaction analyses. The connectivity strength values extracted from each region connected with the LIFG were correlated with specific LIFG neural activity for abstract words, and a regression analysis was conducted to highlight which areas recruited by low IMG or low CA predicted the greater activation of the IFG for abstract concepts. Only the left middle temporal gyrus/angular gyrus, known to be involved in semantic processing, was a significant predictor of LIFG activity differentiating abstract from concrete words. The results show that the abstract conceptual processing requires the interplay of multiple brain regions, necessary for both the intrinsic and extrinsic properties of abstract knowledge. The LIFG can be thus identified as the neural crossroads between different types of information equally necessary for representing processing and differentiating abstract concepts from concrete ones.
RS-FetMRI: a MATLAB-SPM Based Tool for Pre-processing Fetal Resting-State fMRI Data
Resting-state functional magnetic resonance imaging (rs-fMRI) most recently has proved to open a measureless window on functional neurodevelopment in utero. Fetal brain activation and connectivity maps can be heavily influenced by 1) fetal-specific motion effects on the time-series and 2) the accuracy of time-series spatial normalization to a standardized gestational-week (GW) specific fetal template space. Due to the absence of a standardized and generalizable image processing protocol, the objective of the present work was to implement a validated fetal rs-fMRI preprocessing pipeline (RS-FetMRI) divided into 6 inter-dependent preprocessing modules (i.e., M1 to M6) and designed to work entirely as an extension for Statistical Parametric Mapping (SPM). RS-FetMRI pipeline output analyses on rs-fMRI time-series sampled from a cohort of fetuses acquired on both 1.5 T and 3 T MRI scanning systems showed increased efficacy of estimation of the degree of movement coupled with an efficient motion censoring procedure, resulting in increased number of motion-uncorrupted volumes and temporal continuity in fetal rs-fMRI time-series data. Moreover, a “structural-free” SPM-based spatial normalization procedure granted a high degree of spatial overlap with high reproducibility and a significant improvement in whole-brain and parcellation-specific Temporal Signal-to-Noise Ratio (TSNR) mirrored by functional connectivity analysis. To our knowledge, the RS-FetMRI pipeline is the first semi-automatic and easy-to-use standardized fetal rs-fMRI preprocessing pipeline completely integrated in MATLAB-SPM able to remove entry barriers for new research groups into the field of fetal rs-fMRI, for both research or clinical purposes, and ultimately to make future fetal brain connectivity investigations more suitable for comparison and cross-validation.
Microstructural anatomical differences between bilinguals and monolinguals
DTI is an established method to study cerebral white-matter microstructure. Two established measures of DTI are fractional anisotropy (FA) and mean diffusivity (MD) and both differ for bilingual and monolingual speakers. Less is known about differences in two other measures called radial (RD) and axial diffusivity (AD). We report differences in mean RD and AD-values in the right superior longitudinal fasciculus (SLF) and forceps minor between bilingual (Hindi–English) and monolingual (English) speakers as well as differences in mean FA-values in the anterior thalamic radiation, right inferior fronto-occipital and inferior longitudinal fasciculus (ILF) and mean MD-values in forceps minor and bilateral SLF. Noteworthy, a positive correlation between L2 proficiency and mean RD-values in the right SLF was observed. We suggest that changes in the geometry of white matter tracts reflect regular bilingual language experience and contend that neuroplasticity in right SLF results from demands on cognitive control for bilingual speakers.
Subcortico-Cortical Functional Connectivity in the Fetal Brain: A Cognitive Development Blueprint
Recent evidence has shown that patterns of cortico-cortical functional synchronization are consistently traceable by the end of the third trimester of pregnancy. The involvement of subcortical structures in early functional and cognitive development has never been explicitly investigated, notwithstanding their pivotal role in different cognitive processes. We address this issue by exploring subcortico-cortical functional connectivity at rest in a group of normally developing fetuses between the 25th and 32nd weeks of gestation. Results show significant functional coupling between subcortical nuclei and cortical networks related to: (i) sensorimotor processing, (ii) decision making, and (iii) learning capabilities. This functional maturation framework unearths a Cognitive Development Blueprint, according to which grounding cognitive skills are planned to develop with higher ontogenetic priority. Specifically, our evidence suggests that a newborn already possesses the ability to: (i) perceive the world and interact with it, (ii) create salient representations for the selection of adaptive behaviors, and (iii) store, retrieve, and evaluate the outcomes of interactions, in order to gradually improve adaptation to the extrauterine environment.
Genetic engineering of Nannochloropsis oceanica to produce canthaxanthin and ketocarotenoids
Background Canthaxanthin is a ketocarotenoid with high antioxidant activity, and it is primarily produced by microalgae, among which Nannochloropsis oceanica , a marine alga widely used for aquaculture. In the last decade, N. oceanica has become a model organism for oleaginous microalgae to develop sustainable processes to produce biomolecules of interest by exploiting its photosynthetic activity and carbon assimilation properties. N. oceanica can accumulate lipids up to 70% of total dry weight and contains the omega-3 fatty acid eicosapentaenoic acid (EPA) required for both food and feed applications. The genome sequence, other omics data, and synthetic biology tools are available for this species, including an engineered strain called LP-tdTomato, which allows homologous recombination to insert the heterologous genes in a highly transcribed locus in the nucleolus region. Here, N. oceanica was engineered to induce high ketocarotenoid and canthaxanthin production. Results We used N. oceanica LP-tdTomato strain as a background to express the key enzyme for ketocarotenoid production, a β-carotene ketolase (CrBKT) from Chlamydomonas reinhardtii . Through the LP-tdTomato strain, the transgene insertion by homologous recombination in a highly transcribed genomic locus can be screened by negative fluorescence. The overexpression of CrBKT in bkt transformants increased the content of carotenoids and ketocarotenoids per cell, respectively, 1.5 and 10-fold, inducing an orange/red color in the bkt cell cultures. Background ( LP ) and bkt lines productivity were compared at different light intensities from 150 to 1200 µmol m -2 s -1 : at lower irradiances, the growth kinetics of bkt lines were slower compared to LP , while higher productivity was measured for bkt lines at 1200 µmol m -2 s -1 . Despite these results, the highest canthaxanthin and ketocarotenoids productivity were obtained upon cultivation at 150 µmol m -2 s -1 . Conclusions Through targeted gene redesign and heterologous transformation, ketocarotenoids and canthaxanthin content were significantly increased, achieving 0.3% and 0.2% dry weight. Canthaxanthin could be produced using CO 2 as the only carbon source at 1.5 mg/L titer. These bkt-engineered lines hold potential for industrial applications in fish or poultry feed sectors, where canthaxanthin and ketocarotenoids are required as pigmentation agents.
Genetic engineering of Nannochloropsis oceanica to produce canthaxanthin and ketocarotenoids
Canthaxanthin is a ketocarotenoid with high antioxidant activity, and it is primarily produced by microalgae, among which Nannochloropsis oceanica, a marine alga widely used for aquaculture. In the last decade, N. oceanica has become a model organism for oleaginous microalgae to develop sustainable processes to produce biomolecules of interest by exploiting its photosynthetic activity and carbon assimilation properties. N. oceanica can accumulate lipids up to 70% of total dry weight and contains the omega-3 fatty acid eicosapentaenoic acid (EPA) required for both food and feed applications. The genome sequence, other omics data, and synthetic biology tools are available for this species, including an engineered strain called LP-tdTomato, which allows homologous recombination to insert the heterologous genes in a highly transcribed locus in the nucleolus region. Here, N. oceanica was engineered to induce high ketocarotenoid and canthaxanthin production. We used N. oceanica LP-tdTomato strain as a background to express the key enzyme for ketocarotenoid production, a [beta]-carotene ketolase (CrBKT) from Chlamydomonas reinhardtii. Through the LP-tdTomato strain, the transgene insertion by homologous recombination in a highly transcribed genomic locus can be screened by negative fluorescence. The overexpression of CrBKT in bkt transformants increased the content of carotenoids and ketocarotenoids per cell, respectively, 1.5 and 10-fold, inducing an orange/red color in the bkt cell cultures. Background (LP) and bkt lines productivity were compared at different light intensities from 150 to 1200 µmol m.sup.-2 s.sup.-1: at lower irradiances, the growth kinetics of bkt lines were slower compared to LP, while higher productivity was measured for bkt lines at 1200 µmol m.sup.-2 s.sup.-1. Despite these results, the highest canthaxanthin and ketocarotenoids productivity were obtained upon cultivation at 150 µmol m.sup.-2 s.sup.-1. Through targeted gene redesign and heterologous transformation, ketocarotenoids and canthaxanthin content were significantly increased, achieving 0.3% and 0.2% dry weight. Canthaxanthin could be produced using CO.sub.2 as the only carbon source at 1.5 mg/L titer. These bkt-engineered lines hold potential for industrial applications in fish or poultry feed sectors, where canthaxanthin and ketocarotenoids are required as pigmentation agents.