Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
22 result(s) for "Cao, Jiang-Bei"
Sort by:
Comparison of logistic regression and machine learning methods for predicting postoperative delirium in elderly patients: A retrospective study
Aims To compare the performance of logistic regression and machine learning methods in predicting postoperative delirium (POD) in elderly patients. Method This was a retrospective study of perioperative medical data from patients undergoing non‐cardiac and non‐neurology surgery over 65 years old from January 2014 to August 2019. Forty‐six perioperative variables were used to predict POD. A traditional logistic regression and five machine learning models (Random Forest, GBM, AdaBoost, XGBoost, and a stacking ensemble model) were compared by the area under the receiver operating characteristic curve (AUC‐ROC), sensitivity, specificity, and precision. Results In total, 29,756 patients were enrolled, and the incidence of POD was 3.22% after variable screening. AUCs were 0.783 (0.765–0.8) for the logistic regression method, 0.78 for random forest, 0.76 for GBM, 0.74 for AdaBoost, 0.73 for XGBoost, and 0.77 for the stacking ensemble model. The respective sensitivities for the 6 aforementioned models were 74.2%, 72.2%, 76.8%, 63.6%, 71.6%, and 67.4%. The respective specificities for the 6 aforementioned models were 70.7%, 99.8%, 96.5%, 98.8%, 96.5%, and 96.1%. The respective precision values for the 6 aforementioned models were 7.8%, 52.3%, 55.6%, 57%, 54.5%, and 56.4%. Conclusions The optimal application of the logistic regression model could provide quick and convenient POD risk identification to help improve the perioperative management of surgical patients because of its better sensitivity, fewer variables, and easier interpretability than the machine learning model. Six prediction models were constructed for POD using logistic regression, RF, AdaBoost, XGBoost, GBM, and stacking ensemble learning based on retrospective analysis of a large sample dataset. The logistic regression model had the same AUC(0.78) with the RF, and performed better than the machine learning models because of its better sensitivity, fewer variables, and easier interpretability.
Acetaminophen attenuates lipopolysaccharide-induced cognitive impairment through antioxidant activity
Background Considerable evidence has shown that neuroinflammation and oxidative stress play an important role in the pathophysiology of postoperative cognitive dysfunction (POCD) and other progressive neurodegenerative disorders. Increasing evidence suggests that acetaminophen (APAP) has unappreciated antioxidant and anti-inflammatory properties. However, the impact of APAP on the cognitive sequelae of inflammatory and oxidative stress is unknown. The objective of this study is to explore whether APAP could have neuroprotective effects on lipopolysaccharide (LPS)-induced cognitive impairment in mice. Methods A mouse model of LPS-induced cognitive impairment was established to evaluate the neuroprotective effects of APAP against LPS-induced cognitive impairment. Adult C57BL/6 mice were treated with APAP half an hour prior to intracerebroventricular microinjection of LPS and every day thereafter, until the end of the study period. The Morris water maze was used to assess cognitive function from postinjection days 1 to 3. Animal behavioural tests as well as pathological and biochemical assays were performed to evaluate LPS-induced hippocampal damage and the neuroprotective effect of APAP. Results Mice treated with LPS exhibited impaired performance in the Morris water maze without changing spontaneous locomotor activity, which was ameliorated by treatment with APAP. APAP suppressed the accumulation of pro-inflammatory cytokines and microglial activation induced by LPS in the hippocampus. In addition, APAP increased SOD activity, reduced MDA levels, modulated glycogen synthase kinase 3β (GSK3β) activity and elevated brain-derived neurotrophic factor (BDNF) expression in the hippocampus. Moreover, APAP significantly decreased the Bax/Bcl-2 ratio and neuron apoptosis in the hippocampus of LPS-treated mice. Conclusions Our results suggest that APAP may possess a neuroprotective effect against LPS-induced cognitive impairment and inflammatory and oxidative stress via mechanisms involving its antioxidant and anti-inflammatory properties, as well as its ability to inhibit the mitochondrial permeability transition (MPT) pore and the subsequent apoptotic pathway.
Deferoxamine attenuates lipopolysaccharide-induced neuroinflammation and memory impairment in mice
Background Neuroinflammation often results in enduring cognitive impairment and is a risk factor for postoperative cognitive dysfunction. There are currently no effective treatments for infection-induced cognitive impairment. Previous studies have shown that the iron chelator deferoxamine (DFO) can increase the resistance of neurons to injury and disease by stimulating adaptive cellular stress responses. However, the impact of DFO on the cognitive sequelae of neuroinflammation is unknown. Methods A mouse model of lipopolysaccharide (LPS)-induced cognitive impairment was established to evaluate the neuroprotective effects of DFO against LPS-induced memory deficits and neuroinflammation. Adult C57BL/6 mice were treated with 0.5 μg of DFO 3 days prior to intracerebroventricular microinjection of 2 μg of LPS. Cognitive function was assessed using a Morris water maze from post-injection days 1 to 3. Animal behavioral tests, as well as pathological and biochemical assays were performed to evaluate the LPS-induced hippocampal damage and the neuroprotective effect of DFO. Results Treatment of mice with LPS resulted in deficits in cognitive performance in the Morris water maze without changing locomotor activity, which were ameliorated by pretreatment with DFO. DFO prevented LPS-induced microglial activation and elevations of IL-1β and TNF-α levels in the hippocampus. Moreover, DFO attenuated elevated expression of caspase-3, modulated GSK3β activity, and prevented LPS-induced increases of MDA and SOD levels in the hippocampus. DFO also significantly blocked LPS-induced iron accumulation and altered expression of proteins related to iron metabolism in the hippocampus. Conclusions Our results suggest that DFO may possess a neuroprotective effect against LPS-induced neuroinflammation and cognitive deficits via mechanisms involving maintenance of less brain iron, prevention of neuroinflammation, and alleviation of oxidative stress and apoptosis.
lncRNA BDNF-AS Attenuates Propofol-Induced Apoptosis in HT22 Cells by Modulating the BDNF/TrkB Pathway
Propofol is widely used as an intravenous anesthetic in clinical practice. Previous studies have indicated that propofol induces apoptosis in neurons. Brain-derived neurotrophic factor (BDNF), a neurotrophic factor, is associated with neuronal apoptosis. BDNF-AS, a relatively conserved long non-coding RNA, can reverse the transcription of BDNF. This study aimed to investigate the involvement of BDNF-AS in propofol-induced apoptosis in HT22 cells. HT22 cells were treated with various concentrations of propofol at different time points. BDNF-AS was silenced using BDNF-AS-targeting siRNA. TrkB was antagonized by the TrkB inhibitor, ANA-12. Flow cytometry, quantitative reverse-transcription PCR, and western blotting were performed to analyze apoptosis and the expression of genes and proteins, respectively. In propofol-treated HT22 cells, BDNF-AS was upregulated, and BDNF was downregulated in a time- and dose-dependent manner. BDNF-AS downregulation mediated by siRNA mitigated apoptosis, upregulated the expression of Bcl-2, and downregulated the expression of Bax and caspase-3, 7, and 9. ANA-12 downregulated the expression of Bcl-2, upregulated the expression of Bax and caspase-3, 7, and 9, and increased apoptosis. Our study implied that inhibition of BDNF-AS can decrease propofol-induced apoptosis by activating the BDNF/TrkB pathway. Thus, the BDNF-AS-BDNF/TrkB signaling pathway may be a valuable target for treating propofol-induced neurotoxicity.
Development and validation of a nomogram to predict postoperative delirium in older patients after major abdominal surgery: a retrospective case-control study
Background Postoperative delirium is a common complication in older patients, with poor long-term outcomes. This study aimed to investigate risk factors and develop a predictive model for postoperative delirium in older patients after major abdominal surgery. Methods This study retrospectively recruited 7577 patients aged ≥ 65 years who underwent major abdominal surgery between January 2014 and December 2018 in a single hospital in Beijing, China. Patients were divided into a training cohort ( n  = 5303) and a validation cohort ( n  = 2224) for univariate and multivariate logistic regression analyses and to build a nomogram. Data were collected for 43 perioperative variables, including demographics, medical history, preoperative laboratory results, imaging, and anesthesia information. Results Age, chronic obstructive pulmonary disease, white blood cell count, glucose, total protein, creatinine, emergency surgery, and anesthesia time were associated with postoperative delirium in multivariate analysis. We developed a nomogram based on the above 8 variables. The nomogram achieved areas under the curve of 0.731 and 0.735 for the training and validation cohorts, respectively. The discriminatory ability of the nomogram was further assessed by dividing the cases into three risk groups (low-risk, nomogram score < 175; medium-risk, nomogram score 175~199; high-risk, nomogram score > 199; P  < 0.001). Decision curve analysis revealed that the nomogram provided a good net clinical benefit. Conclusions We developed a nomogram that could predict postoperative delirium with high accuracy and stability in older patients after major abdominal surgery.
Dysfunction of EAAT3 Aggravates LPS-Induced Post-Operative Cognitive Dysfunction
Numerous results have revealed an association between inhibited function of excitatory amino acid transporter 3 (EAAT3) and several neurodegenerative diseases. This was also corroborated by our previous studies which showed that the EAAT3 function was intimately linked to learning and memory. With this premise, we examined the role of EAAT3 in post-operative cognitive dysfunction (POCD) and explored the potential benefit of riluzole in countering POCD in the present study. We first established a recombinant adeno-associated-viral (rAAV)-mediated shRNA to knockdown SLC1A1/EAAT3 expression in the hippocampus of adult male mice. The mice then received an intracerebroventricular microinjection of 2 μg lipopolysaccharide (LPS) to construct the POCD model. In addition, for old male mice, 4 mg/kg of riluzole was intraperitoneally injected for three consecutive days, with the last injection administered 2 h before the LPS microinjection. Cognitive function was assessed using the Morris water maze 24 h following the LPS microinjection. Animal behavioral tests, as well as pathological and biochemical assays, were performed to clarify the role of EAAT3 function in POCD and evaluate the effect of activating the EAAT3 function by riluzole. In the present study, we established a mouse model with hippocampal SLC1A1/EAAT3 knockdown and found that hippocampal SLC1A1/EAAT3 knockdown aggravated LPS-induced learning and memory deficits in adult male mice. Meanwhile, LPS significantly inhibited the expression of EAAT3 membrane protein and the phosphorylation level of GluA1 protein in the hippocampus of adult male mice. Moreover, riluzole pretreatment significantly increased the expression of hippocampal EAAT3 membrane protein and also ameliorated LPS-induced cognitive impairment in elderly male mice. Taken together, our results demonstrated that the dysfunction of EAAT3 is an important risk factor for POCD susceptibility and therefore, it may become a promising target for POCD treatment.
Application of LMA SupremeTM and SLIPATM laryngeal mask airway in female patients undergoing general anesthesia airway management and related postoperative complications: A retrospective study
Objective To compare the usage of two kinds of laryngeal mask LMA SupremeTM and SLIPATM in airway management of general anesthesia in adult female patients and the related postoperative complications, so as to provide the basis evidence for guiding the usage of the laryngeal mask airway. Methods The DoCare anesthesia information management system was used to retrieve the cases of female patients treated with LMA SupremeTM (group L) or SLIPATM (group S) to manage airway during general anesthesia during Oct. 2017 to Mar. 2018. The possibly associated complications occurred during or after operation were recorded after checking the anesthesia information management system. Results A total of 924 adult female patients were undergone the LMA SupremeTM (379 cases, 41%) or SLIPATM (545 cases, 59%) during operation. The patients came from the department of breast specialist, gynecology, plastic surgery, tumor surgery and other departments. In group L, the size 3# and 4# laryngeal mask were used in proportions of 28.5
Attempt to Quantify Molecules of Host Plant Volatiles Evoking an Electroantennographic Response in Anoplophora glabripennis Antennae
Anoplophora glabripennis, is one of the most devastating wood borers of many broad leaf trees. Our previous results indicated that antennae of A. glabripennis showed electroantennogram (EAG) responses to several host plant volatiles. However, the quantities of active compounds necessary to trigger an EAG response remains unclear. To relate EAG responses with quantities of active molecules, we quantified the level of molecular triggering in the EAG response of A. glabripennis by a series of procedures. First, we used the EAG apparatus to measure EAG responses of A. glabripennis to five concentrations of eight chemicals and obtained dose–response curves. Second, volatiles released after blowing air over filter paper loaded with volatiles for different numbers of times (purging) were collected by solid-phase microextraction (SPME) and quantified by gas chromatography (GC), so we obtained the quantity of chemical released from each purge; the minimum number of molecules in each purge in the EAG was calculated by the molar mass for different compounds. For instance, the number of molecules of (Z)-3-hexenol reaching the female antennal segment in EAG was 8.68 × 108 at 0.01 ng/μL concentration, and 1.39 × 105 at 0.01 mV potential value. Finally, by comparing sensilla numbers on tested antennal segments with the entire antennae, the minimum number of molecules, or molecular flow, of tested compounds required to elicit an electrophysiological response from two antennae of ALB could be estimated either at a minimum concentration (2.49 × 108 at 0.01 ng/μL concentration of (Z)-3-Hexenol, for female) or at a minimum potentiometric response value (3.99 × 104 at 0.01 mV potential value).
Intervertebral disc degeneration in mice with type II diabetes induced by leptin receptor deficiency
Background The leptin receptor-deficient knockout (db/db) mouse is a well-established model for studying type II diabetes mellitus (T2DM). T2DM is an important risk factor of intervertebral disc degeneration (IVDD). Although the relationship between type I diabetes and IVDD has been reported by many studies, few studies have reported the effects of T2DM on IVDD in db/db mice model. Methods Mice were separated into 3 groups: wild-type (WT), db/db, and IGF-1 groups (leptin receptor-deficient mice were treated with insulin-like growth factor-1 (IGF-1). To observe the effects of T2DM and glucose-lowering treatment on IVDD, IGF-1 injection was used. The IVD phenotype was detected by H&E and safranin O fast green staining among db/db, WT and IGF-1 mice. The levels of blood glucose and weight in mice were also recorded. The changes in the mass of the trabecular bone in the fifth lumbar vertebra were documented by micro-computed tomography (micro-CT). Tunnel assays were used to detect cell apoptosis in each group. Results The weight of the mice were 27.68 ± 1.6 g in WT group, which was less than 57.56 ± 4.8 g in db/db group, and 52.17 ± 3.7 g in IGF-1 injected group ( P  < 0.05). The blood glucose levels were also significantly higher in the db/db mice group. T2DM caused by leptin receptor knockout showed an association with significantly decreased vertebral bone mass and increased IVDD when compared to WT mice. The db/db mice induced by leptin deletion showed a higher percentage of MMP3 expression as well as cell apoptosis in IVDD mice than WT mice ( P  < 0.05), while IGF-1 treatment reversed this situation ( P  < 0.05). Conclusions T2DM induced by leptin receptor knockout led to IVDD by increasing the levels of MMP3 and promoting cell apoptosis. IGF-1 treatment partially rescue the phenotype of IVDD induced by leptin receptor knockout.
The overlap of neural selectivity between faces and words: evidences from the N170 adaptation effect
Faces and words both evoke an N170, a strong electrophysiological response that is often used as a marker for the early stages of expert pattern perception. We examine the relationship of neural selectivity between faces and words by using a novel application of cross-category adaptation to the N170. We report a strong asymmetry between N170 adaptation induced by faces and by words. This is the first electrophysiological result showing that neural selectivity to faces encompasses neural selectivity to words and suggests that the N170 response to faces constitutes a neural marker for versatile representations of familiar visual patterns.