Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
1,890 result(s) for "Cao, X. G."
Sort by:
Search for Majorana neutrinos exploiting millikelvin cryogenics with CUORE
The possibility that neutrinos may be their own antiparticles, unique among the known fundamental particles, arises from the symmetric theory of fermions proposed by Ettore Majorana in 1937 1 . Given the profound consequences of such Majorana neutrinos, among which is a potential explanation for the matter–antimatter asymmetry of the universe via leptogenesis 2 , the Majorana nature of neutrinos commands intense experimental scrutiny globally; one of the primary experimental probes is neutrinoless double beta (0 νββ ) decay. Here we show results from the search for 0 νββ decay of 130 Te, using the latest advanced cryogenic calorimeters with the CUORE experiment 3 . CUORE, operating just 10 millikelvin above absolute zero, has pushed the state of the art on three frontiers: the sheer mass held at such ultralow temperatures, operational longevity, and the low levels of ionizing radiation emanating from the cryogenic infrastructure. We find no evidence for 0 νββ decay and set a lower bound of the process half-life as 2.2 × 10 25  years at a 90 per cent credibility interval. We discuss potential applications of the advances made with CUORE to other fields such as direct dark matter, neutrino and nuclear physics searches and large-scale quantum computing, which can benefit from sustained operation of large payloads in a low-radioactivity, ultralow-temperature cryogenic environment. The CUORE experiment finds no evidence for neutrinoless double beta decay after operating a large cryogenic TeO 2 calorimeter stably for several years in an extreme low-radiation environment at a temperature of 10 millikelvin.
Initial performance of the CUORE-0 experiment
CUORE-0 is a cryogenic detector that uses an array of tellurium dioxide bolometers to search for neutrinoless double-beta decay of 130 Te . We present the first data analysis with 7.1 kg · y of total TeO 2 exposure focusing on background measurements and energy resolution. The background rates in the neutrinoless double-beta decay region of interest (2.47 to 2.57 MeV ) and in the α background-dominated region (2.70 to 3.90 MeV ) have been measured to be 0.071 ± 0.011 and 0.019 ± 0.002 counts / ( keV · kg · y ) , respectively. The latter result represents a factor of 6 improvement from a predecessor experiment, Cuoricino. The results verify our understanding of the background sources in CUORE-0, which is the basis of extrapolations to the full CUORE detector. The obtained energy resolution (full width at half maximum) in the region of interest is 5.7 keV . Based on the measured background rate and energy resolution in the region of interest, CUORE-0 half-life sensitivity is expected to surpass the observed lower bound of Cuoricino with one year of live time.
Search for double-beta decay of 130Te to the 0+ states of 130Xe with CUORE
The CUORE experiment is a large bolometric array searching for the lepton number violating neutrino-less double beta decay (0νββ) in the isotope 130Te. In this work we present the latest results on two searches for the double beta decay (DBD) of 130Te to the first 02+ excited state of 130Xe: the 0νββ decay and the Standard Model-allowed two-neutrinos double beta decay (2νββ). Both searches are based on a 372.5 kg×yr TeO2 exposure. The de-excitation gamma rays emitted by the excited Xe nucleus in the final state yield a unique signature, which can be searched for with low background by studying coincident events in two or more bolometers. The closely packed arrangement of the CUORE crystals constitutes a significant advantage in this regard. The median limit setting sensitivities at 90% Credible Interval (C.I.) of the given searches were estimated as S1/20ν=5.6×1024yr for the 0νββ decay and S1/22ν=2.1×1024yr for the 2νββ decay. No significant evidence for either of the decay modes was observed and a Bayesian lower bound at 90% C.I. on the decay half lives is obtained as: (T1/2)02+0ν>5.9×1024yr for the 0νββ mode and (T1/2)02+2ν>1.3×1024yr for the 2νββ mode. These represent the most stringent limits on the DBD of 130Te to excited states and improve by a factor ∼5 the previous results on this process.
Strengthening mechanisms in a rapidly solidified and aged Cu-Cr alloy
A single-roller melt spinning method was used to produce Cu-Cr microcrystal alloy ribbons. Upon proper aging treatment, the strength and hardness of the alloy were remarkably enhanced while the conductivity only had a minimal decrease. Grain refinement and coherent dispersion strengthening were proved to be the major factors contributing to the improvement of strength and hardness of the alloy after aging. The degree of coherent strengthening was almost identical with that calculated by the Gerold equation. Compared with the solid solution quenched Cu-Cr alloy, the peak hardness was increased 2.6 times, in which about 27% was attributed to the grain refinement and 73%, in turn, provided by coherent strengthening due to aging precipitation. Neither the solid solution strengthening nor vacancy strengthening had detectable effect on the strength and hardness of the rapidly solidified Cu-Cr alloy.
Searching for Neutrinoless Double-Beta Decay of 130Te with CUORE
Neutrinoless double-beta (0 ν β β ) decay is a hypothesized lepton-number-violating process that offers the only known means of asserting the possible Majorana nature of neutrino mass. The Cryogenic Underground Observatory for Rare Events (CUORE) is an upcoming experiment designed to search for 0 ν β β decay of 130Te using an array of 988 TeO2 crystal bolometers operated at 10 mK. The detector will contain 206 kg of 130Te and have an average energy resolution of 5 keV; the projected 0 ν β β decay half-life sensitivity after five years of livetime is 1.6 × 1026 y at 1 σ (9.5 × 1025 y at the 90% confidence level), which corresponds to an upper limit on the effective Majorana mass in the range 40–100 meV (50–130 meV). In this paper, we review the experimental techniques used in CUORE as well as its current status and anticipated physics reach.
Low energy analysis techniques for CUORE
CUORE is a tonne-scale cryogenic detector operating at the Laboratori Nazionali del Gran Sasso (LNGS) that uses tellurium dioxide bolometers to search for neutrinoless double-beta decay of 130 Te. CUORE is also suitable to search for low energy rare events such as solar axions or WIMP scattering, thanks to its ultra-low background and large target mass. However, to conduct such sensitive searches requires improving the energy threshold to 10 keV. In this paper, we describe the analysis techniques developed for the low energy analysis of CUORE-like detectors, using the data acquired from November 2013 to March 2015 by CUORE-0, a single-tower prototype designed to validate the assembly procedure and new cleaning techniques of CUORE. We explain the energy threshold optimization, continuous monitoring of the trigger efficiency, data and event selection, and energy calibration at low energies in detail. We also present the low energy background spectrum of CUORE-0 below 60 keV . Finally, we report the sensitivity of CUORE to WIMP annual modulation using the CUORE-0 energy threshold and background, as well as an estimate of the uncertainty on the nuclear quenching factor from nuclear recoils inCUORE-0.
The CUORE Detector and Results
The cryogenic underground observatory for rare events (CUORE) is a cryogenic experiment searching for neutrinoless double beta decay ( 0 ν β β ) of 130 Te . The detector consists of an array of 988 TeO 2 crystals arranged in a compact cylindrical structure of 19 towers. We report the CUORE initial operations and optimization campaigns. We then present the CUORE results on 0 ν β β and 2 ν β β decay of 130 Te obtained from the analysis of the physics data acquired in 2017.
Expected sensitivity to 128Te neutrinoless double beta decay with the CUORE TeO2 cryogenic bolometers
The CUORE experiment is a ton-scale array of TeO 2 cryogenic bolometers located at the underground Laboratori Nazionali del Gran Sasso of Istituto Nazionale di Fisica Nucleare (INFN), in Italy. The CUORE detector consists of 988 crystals operated as source and detector at a base temperature of ∼ 10 mK. Such cryogenic temperature is reached and maintained by means of a custom built cryogen-free dilution cryostat, designed with the aim of minimizing the vibrational noise and the environmental radioactivity. The primary goal of CUORE is the search for neutrinoless double beta decay of 130 Te , but thanks to its large target mass and ultra-low background it is suitable for the study of other rare processes as well, such as the neutrinoless double beta decay of 128 Te . This tellurium isotope is an attractive candidate for the search of this process, due to its high natural isotopic abundance of 31.75%. The transition energy at (866.7 ± 0.7) keV lies in a highly populated region of the energy spectrum, dominated by the contribution of the two-neutrino double beta decay of 130 Te . As the first ton-scale infrastructure operating cryogenic TeO 2 bolometers in stable conditions, CUORE is able to achieve a factor > 10 higher sensitivity to the neutrinoless double beta decay of this isotope with respect to past direct experiments.
The relationship between fracture toughness and microstructure of fully lamellar TiAl alloy
Fully lamellar (FL) Ti–46.5Al–2Cr–1.5Nb–1V (at%) alloy is used to study the relationship between microstructure and fracture toughness. A heat treatment process is adopted to control the microstructural parameters of the studied alloy. Fracture toughness experiments and scanning electron microscope (SEM) in-situ straining experiments are carried out to determine the influence of lamellar spacing and grain size on the fracture toughness of FL TiAl alloys. It is found that ligament length depends on the lamellar spacing, and fracture toughness varies non-monotonously with the increase of grain size. The results are ascribed to the competition between the microcrack nucleation and microcrack propagation. Finally a semi-empirical relationship between the fracture toughness and microstructure parameters was established.
Latest Results from the CUORE Experiment
The Cryogenic Underground Observatory for Rare Events (CUORE) is the first cryogenic experiment searching for 0 ν β β decay that has been able to reach the one-tonne mass scale. The detector, located at the Laboratori Nazionali del Gran Sasso (LNGS) in Italy, consists of an array of 988 TeO 2 crystals arranged in a compact cylindrical structure of 19 towers. CUORE began its first physics data run in 2017 at a base temperature of about 10 mK and in April 2021 released its 3 rd result of the search for 0 ν β β , corresponding to a tonne-year of TeO 2 exposure. This is the largest amount of data ever acquired with a solid state detector and the most sensitive measurement of 0 ν β β decay in 130 Te ever conducted . We present the current status of CUORE search for 0 ν β β with the updated statistics of one tonne-yr. We finally give an update of the CUORE background model and the measurement of the 130 Te 2 ν β β decay half-life and decay to excited states of 130 Xe , studies performed using an exposure of 300.7 kg yr.