Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
83 result(s) for "Capelozzi, Vera L"
Sort by:
Immunization with SARS-CoV-2 Nucleocapsid protein triggers a pulmonary immune response in rats
The SARS-CoV-2 pandemic have been affecting millions of people worldwide, since the beginning of 2020. COVID-19 can cause a wide range of clinical symptoms, which varies from asymptomatic presentation to severe respiratory insufficiency, exacerbation of immune response, disseminated microthrombosis and multiple organ failure, which may lead to dead. Due to the rapid spread of SARS-CoV-2, the development of vaccines to minimize COVID-19 severity in the world population is imperious. One of the employed techniques to produce vaccines against emerging viruses is the synthesis of recombinant proteins, which can be used as immunizing agents. Based on the exposed, the aim of the present study was to verify the systemic and immunological effects of IM administration of recombinant Nucleocapsid protein (NP), derived from SARS-CoV-2 and produced by this research group, in 2 different strains of rats ( Rattus norvegicus ); Wistar and Lewis. For this purpose, experimental animals received 4 injections of NP, once a week, and were submitted to biochemical and histological analysis. Our results showed that NP inoculations were safe for the animals, which presented no clinical symptoms of worrying side effects, nor laboratorial alterations in the main biochemical and histological parameters, suggesting the absence of toxicity induced by NP. Moreover, NP injections successfully triggered the production of specific anti-SARS-CoV-2 IgG antibodies by both Wistar and Lewis rats, showing the sensitization to have been well sufficient for the immunization of these strains of rats. Additionally, we observed the local lung activation of the Bronchus-Associated Lymphoid Tissue (BALT) of rats in the NP groups, suggesting that NP elicits specific lung immune response. Although pre-clinical and clinical studies are still required, our data support the recombinant NP produced by this research group as a potential immunizing agent for massive vaccination, and may represent advantages upon other recombinant proteins, since it seems to induce specific pulmonary protection.
Focal ischemic stroke leads to lung injury and reduces alveolar macrophage phagocytic capability in rats
Background Ischemic stroke causes brain inflammation, which we postulate may result in lung damage. Several studies have focused on stroke-induced immunosuppression and lung infection; however, the possibility that strokes may trigger lung inflammation has been overlooked. We hypothesized that even focal ischemic stroke might induce acute systemic and pulmonary inflammation, thus altering respiratory parameters, lung tissue integrity, and alveolar macrophage behavior. Methods Forty-eight Wistar rats were randomly assigned to ischemic stroke (Stroke) or sham surgery (Sham). Lung function, histology, and inflammation in the lung, brain, bronchoalveolar lavage fluid (BALF), and circulating plasma were evaluated at 24 h. In vitro, alveolar macrophages from naïve rats (unstimulated) were exposed to serum or BALF from Sham or Stroke animals to elucidate possible mechanisms underlying alterations in alveolar macrophage phagocytic capability. Alveolar macrophages and epithelial and endothelial cells of Sham and Stroke animals were also isolated for evaluation of mRNA expression of interleukin (IL)-6 and tumor necrosis factor (TNF)-α. Results Twenty-four hours following ischemic stroke, the tidal volume, expiratory time, and mean inspiratory flow were increased. Compared to Sham animals, the respiratory rate and duty cycle during spontaneous breathing were reduced, but this did not affect lung mechanics during mechanical ventilation. Lungs from Stroke animals showed clear evidence of increased diffuse alveolar damage, pulmonary edema, and inflammation markers. This was associated with an increase in ultrastructural damage, as evidenced by injury to type 2 pneumocytes and endothelial cells, cellular infiltration, and enlarged basement membrane thickness. Protein levels of proinflammatory mediators were documented in the lung, brain, and plasma (TNF-α and IL-6) and in BALF (TNF-α). The phagocytic ability of macrophages was significantly reduced. Unstimulated macrophages isolated from naïve rats only upregulated expression of TNF-α and IL-6 following exposure to serum from Stroke rats. Exposure to BALF from Stroke or Sham animals did not change alveolar macrophage behavior, or gene expression of TNF-α and IL-6. IL-6 expression was increased in macrophages and endothelial cells from Stroke animals. Conclusions In rats, focal ischemic stroke is associated with brain–lung crosstalk, leading to increased pulmonary damage and inflammation, as well as reduced alveolar macrophage phagocytic capability, which seems to be promoted by systemic inflammation.
Effects of different mesenchymal stromal cell sources and delivery routes in experimental emphysema
We sought to assess whether the effects of mesenchymal stromal cells (MSC) on lung inflammation and remodeling in experimental emphysema would differ according to MSC source and administration route. Emphysema was induced in C57BL/6 mice by intratracheal (IT) administration of porcine pancreatic elastase (0.1 UI) weekly for 1 month. After the last elastase instillation, saline or MSCs (1-10 5 ), isolated from either mouse bone marrow (BM), adipose tissue (AD) or lung tissue (L), were administered intravenously (IV) or IT. After 1 week, mice were euthanized. Regardless of administration route, MSCs from each source yielded: 1) decreased mean linear intercept, neutrophil infiltration, and cell apoptosis; 2) increased elastic fiber content; 3) reduced alveolar epithelial and endothelial cell damage; and 4) decreased keratinocyte-derived chemokine (KC, a mouse analog of interleukin-8) and transforming growth factor-β levels in lung tissue. In contrast with IV, IT MSC administration further reduced alveolar hyperinflation (BM-MSC) and collagen fiber content (BM-MSC and L-MSC). Intravenous administration of BM- and AD-MSCs reduced the number of M1 macrophages and pulmonary hypertension on echocardiography, while increasing vascular endothelial growth factor. Only BM-MSCs (IV > IT) increased the number of M2 macrophages. In conclusion, different MSC sources and administration routes variably reduced elastase-induced lung damage, but IV administration of BM-MSCs resulted in better cardiovascular function and change of the macrophage phenotype from M1 to M2.
Effects of different sodium concentrations in fluids on brain, lung, and kidney in experimental ischemic stroke
Fluid administration is a key component in the management of acute ischemic stroke (AIS). However, the effects of different sodium concentrations in resuscitation fluids, particularly on distal organ function, remain controversial. This study compared the impact of four commonly used fluids—0.9% isotonic saline (ISO), 0.45% hypotonic saline (HYPO), 1.5% hypertonic saline (HYPER), and 5% glucose (GLUCO)—on perilesional brain tissue, lungs, and kidneys following AIS. AIS was induced in 28 male Wistar rats. Three hours after stroke induction, animals were randomized to receive one of the four fluids. In the brain, the ISO group showed significantly higher expression of versican and hyaluronan compared to the HYPER group ( p  = 0.022 and p  = 0.018, respectively). Conversely, the HYPER group exhibited significantly elevated levels of interleukin-1β (IL-1β), vascular cell adhesion molecule-1 (VCAM-1), and zonula occludens-1 (ZO-1) compared to the GLUCO group ( p  = 0.01, p  = 0.02, and p  = 0.006, respectively). In the lungs, the ISO group demonstrated less alveolar collapse and pulmonary edema compared to the HYPER and HYPO groups ( p  = 0.01 and p  = 0.007, respectively). In the kidneys, both the ISO and HYPO groups showed significantly less brush-border injury than the HYPER group ( p  = 0.007 and p  = 0.032, respectively). Furthermore, blood chloride levels declined over time in the ISO group compared to the others. In conclusion, isotonic fluid administration resulted in the least amount of injury to the brain, lungs, and kidneys in this experimental model of AIS, supporting its use as a preferred resuscitation strategy in the acute phase.
The impact of fluid status and decremental PEEP strategy on cardiac function and lung and kidney damage in mild-moderate experimental acute respiratory distress syndrome
Background We evaluated the effects of abrupt versus gradual PEEP decrease, combined with standard versus high-volume fluid administration, on cardiac function, as well as lung and kidney damage in an established model of mild-moderate acute respiratory distress syndrome (ARDS). Methods Wistar rats received endotoxin intratracheally. After 24 h, they were treated with Ringer’s lactate at standard (10 mL/kg/h) or high (30 mL/kg/h) dose. For 30 min, all animals were mechanically ventilated with tidal volume = 6 mL/kg and PEEP = 9 cmH 2 O (to keep alveoli open), then randomized to undergo abrupt or gradual (0.2 cmH 2 O/min for 30 min) PEEP decrease from 9 to 3 cmH 2 O. Animals were then further ventilated for 10 min at PEEP = 3 cmH 2 O, euthanized, and their lungs and kidneys removed for molecular biology analysis. Results At the end of the experiment, left and right ventricular end-diastolic areas were greater in animals treated with high compared to standard fluid administration, regardless of PEEP decrease rate. However, pulmonary arterial pressure, indicated by the pulmonary acceleration time (PAT)/pulmonary ejection time (PET) ratio, was higher in abrupt compared to gradual PEEP decrease, independent of fluid status. Animals treated with high fluids and abrupt PEEP decrease exhibited greater diffuse alveolar damage and higher expression of interleukin-6 (a pro-inflammatory marker) and vascular endothelial growth factor (a marker of endothelial cell damage) compared to the other groups. The combination of standard fluid administration and gradual PEEP decrease increased zonula occludens-1 expression, suggesting epithelial cell preservation. Expression of club cell-16 protein, an alveolar epithelial cell damage marker, was higher in abrupt compared to gradual PEEP decrease groups, regardless of fluid status. Acute kidney injury score and gene expression of kidney injury molecule-1 were higher in the high versus standard fluid administration groups, regardless of PEEP decrease rate. Conclusion In the ARDS model used herein, decreasing PEEP abruptly increased pulmonary arterial hypertension, independent of fluid status. The combination of abrupt PEEP decrease and high fluid administration led to greater lung and kidney damage. This information adds to the growing body of evidence that supports gradual transitioning of ventilatory patterns and warrants directing additional investigative effort into vascular and deflation issues that impact lung protection.
Impact of positive biphasic pressure during low and high inspiratory efforts in Pseudomonas aeruginosa-induced pneumonia
During pneumonia, normal alveolar areas coexist adjacently with consolidated areas, and high inspiratory efforts may predispose to lung damage. To date, no study has evaluated different degrees of effort during Biphasic positive airway pressure (BIVENT) on lung and diaphragm damage in experimental pneumonia, though largely used in clinical setting. We aimed to evaluate lung damage, genes associated with ventilator-induced lung injury (VILI) and diaphragmatic injury, and blood bacteria in pressure-support ventilation (PSV), BIVENT with low and high inspiratory efforts in experimental pneumonia. Twenty-eight male Wistar rats (mean ± SD weight, 333±78g) were submitted Pseudomonas aeruginosa-induced pneumonia. After 24-h, animals were ventilated for 1h in: 1) PSV; 2) BIVENT with low (BIVENTLow-Effort); and 3) BIVENT with high inspiratory effort (BIVENTHigh-Effort). BIVENT was set at Phigh to achieve VT = 6 ml/kg and Plow at 5 cmH2O (n = 7/group). High- and low-effort conditions were obtained through anaesthetic infusion modulation based on neuromuscular drive (P0.1). Lung mechanics, histological damage score, blood bacteria, and expression of genes related to VILI in lung tissue, and inflammation in diaphragm tissue. Transpulmonary peak pressure and histological damage score were higher in BIVENTHigh-Effort compared to BIVENTLow-Effort and PSV [16.1 ± 1.9cmH2O vs 12.8 ± 1.5cmH2O and 12.5 ± 1.6cmH2O, p = 0.015, and p = 0.010; median (interquartile range) 11 (9-13) vs 7 (6-9) and 7 (6-9), p = 0.021, and p = 0.029, respectively]. BIVENTHigh-Effort increased interleukin-6 expression compared to BIVENTLow-Effort (p = 0.035) as well as expressions of cytokine-induced neutrophil chemoattractant-1, amphiregulin, and type III procollagen compared to PSV (p = 0.001, p = 0.001, p = 0.004, respectively). Tumour necrosis factor-α expression in diaphragm tissue and blood bacteria were higher in BIVENTHigh-Effort than BIVENTLow-Effort (p = 0.002, p = 0.009, respectively). BIVENT requires careful control of inspiratory effort to avoid lung and diaphragm damage, as well as blood bacteria. P0.1 might be considered a helpful parameter to optimize inspiratory effort.
Diagnosis of Acute Cellular Rejection and Antibody-Mediated Rejection on Lung Transplant Biopsies: A Perspective From Members of the Pulmonary Pathology Society
- The diagnosis and grading of acute cellular and antibody-mediated rejection (AMR) in lung allograft biopsies is important because rejection can lead to acute graft dysfunction and/or failure and may contribute to chronic graft failure. While acute cellular rejection is well defined histologically, no reproducible specific features of AMR are currently identified. Therefore, a combination of clinical features, serology, histopathology, and immunologic findings is suggested for the diagnosis of AMR. - To describe the perspective of members of the Pulmonary Pathology Society (PPS) on the workup of lung allograft transbronchial biopsy and the diagnosis of acute cellular rejection and AMR in lung transplant. - Reports by the International Society for Heart and Lung Transplantation (ISHLT), experience of members of PPS who routinely review lung allograft biopsies, and search of literature database (PubMed). - Acute cellular rejection should be assessed and graded according to the 2007 working formulation of the ISHLT. As currently no specific features are known for AMR in lung allografts, the triple test (clinical allograft dysfunction, donor-specific antibodies, pathologic findings) should be used for its diagnosis. C4d staining might be performed when morphologic, clinical, and/or serologic features suggestive of AMR are identified.
Impact of different frequencies of controlled breath and pressure-support levels during biphasic positive airway pressure ventilation on the lung and diaphragm in experimental mild acute respiratory distress syndrome
We hypothesized that a decrease in frequency of controlled breaths during biphasic positive airway pressure (BIVENT), associated with an increase in spontaneous breaths, whether pressure support (PSV)-assisted or not, would mitigate lung and diaphragm damage in mild experimental acute respiratory distress syndrome (ARDS). Wistar rats received Escherichia coli lipopolysaccharide intratracheally. After 24 hours, animals were randomly assigned to: 1) BIVENT-100+PSV0%: airway pressure (Phigh) adjusted to VT = 6 mL/kg and frequency of controlled breaths (f) = 100 bpm; 2) BIVENT-50+PSV0%: Phigh adjusted to VT = 6 mL/kg and f = 50 bpm; 3) BIVENT-50+PSV50% (PSV set to half the Phigh reference value, i.e., PSV50%); or 4) BIVENT-50+PSV100% (PSV equal to Phigh reference value, i.e., PSV100%). Positive end-expiratory pressure (Plow) was equal to 5 cmH2O. Nonventilated animals were used for lung and diaphragm histology and molecular biology analysis. BIVENT-50+PSV0%, compared to BIVENT-100+PSV0%, reduced the diffuse alveolar damage (DAD) score, the expression of amphiregulin (marker of alveolar stretch) and muscle atrophy F-box (marker of diaphragm atrophy). In BIVENT-50 groups, the increase in PSV (BIVENT-50+PSV50% versus BIVENT-50+PSV100%) yielded better lung mechanics and less alveolar collapse, interstitial edema, cumulative DAD score, as well as gene expressions associated with lung inflammation, epithelial and endothelial cell damage in lung tissue, and muscle ring finger protein 1 (marker of muscle proteolysis) in diaphragm. Transpulmonary peak pressure (Ppeak,L) and pressure-time product per minute (PTPmin) at Phigh were associated with lung damage, while increased spontaneous breathing at Plow did not promote lung injury. In the ARDS model used herein, during BIVENT, the level of PSV and the phase of the respiratory cycle in which the inspiratory effort occurs affected lung and diaphragm damage. Partitioning of inspiratory effort and transpulmonary pressure in spontaneous breaths at Plow and Phigh is required to minimize VILI.
Eicosapentaenoic acid potentiates the therapeutic effects of adipose tissue-derived mesenchymal stromal cells on lung and distal organ injury in experimental sepsis
Background Even though mesenchymal stromal cells (MSCs) mitigate lung and distal organ damage in experimental polymicrobial sepsis, mortality remains high. We investigated whether preconditioning with eicosapentaenoic acid (EPA) would potentiate MSC actions in experimental sepsis by further decreasing lung and distal organ injury, thereby improving survival. Methods In C57BL/6 mice, sepsis was induced by cecal hligation and puncture (CLP); sham-operated animals were used as control. Twenty-four hours after surgery, CLP mice were further randomized to receive saline, adipose tissue-derived (AD)-MSCs (10 5 , nonpreconditioned), or AD-MSCs preconditioned with EPA for 6 h (10 5 , EPA-preconditioned MSCs) intravenously. After 24 h, survival rate, sepsis severity score, lung mechanics and histology, protein level of selected biomarkers in lung tissue, cellularity in blood, distal organ damage, and MSC distribution (by technetium-99m tagging) were analyzed. Additionally, the effects of EPA on the secretion of resolvin-D 1 (RvD 1 ), prostaglandin E 2 (PGE 2 ), interleukin (IL)-10, and transforming growth factor (TGF)-β1 by MSCs were evaluated in vitro. Results Nonpreconditioned and EPA-preconditioned AD-MSCs exhibited similar viability and differentiation capacity, accumulated mainly in the lungs and kidneys following systemic administration. Compared to nonpreconditioned AD-MSCs, EPA-preconditioned AD-MSCs further reduced static lung elastance, alveolar collapse, interstitial edema, alveolar septal inflammation, collagen fiber content, neutrophil cell count as well as protein levels of interleukin-1β and keratinocyte chemoattractant in lung tissue, and morphological abnormalities in the heart (cardiac myocyte architecture), liver (hepatocyte disarrangement and Kupffer cell hyperplasia), kidney (acute tubular necrosis), spleen (increased number of megakaryocytes and lymphocytes), and small bowel (villi architecture disorganization). EPA preconditioning of MSCs resulted in increased secretion of pro-resolution and anti-inflammatory mediators (RvD 1 , PGE 2 , IL-10, and TGF-β). Conclusions Compared to nonpreconditioned cells, EPA-preconditioned AD-MSCs yielded further reductions in the lung and distal organ injury, resulting in greater improvement in sepsis severity score and higher survival rate in CLP-induced experimental sepsis. This may be a promising therapeutic approach to improve outcome in septic patients.
Mesenchymal stromal cell therapy reduces lung inflammation and vascular remodeling and improves hemodynamics in experimental pulmonary arterial hypertension
Background Experimental research has reported beneficial effects of mesenchymal stromal cell (MSC) therapy in pulmonary arterial hypertension (PAH). However, these studies either were based on prophylactic protocols or assessed basic remodeling features without evaluating possible mechanisms. We analyzed the effects of MSC therapy on lung vascular remodeling and hemodynamics and its possible mechanisms of action in monocrotaline (MCT)-induced PAH. Methods Twenty-eight Wistar rats were randomly divided into two groups. In the PAH group, animals received MCT 60 mg/kg intraperitoneally, while a control group received saline (SAL) instead. On day 14, both groups were further randomized to receive 10 5 adipose-derived MSCs or SAL intravenously ( n  = 7/group). On day 28, right ventricular systolic pressure (RVSP) and the gene expression of mediators associated with apoptosis, inflammation, fibrosis, Smad-1 levels, cell proliferation, and endothelial–mesenchymal transition were determined. In addition, lung histology (smooth muscle cell proliferation and plexiform-like injuries), CD68 + and CD163 + macrophages, and plasma levels of vascular endothelial growth factor (VEGF) and platelet-derived growth factor (PDGF) were evaluated. Results In the PAH group, adipose-derived MSCs, compared to SAL, reduced mean RVSP (29 ± 1 vs 39 ± 2 mmHg, p  < 0.001), lung tissue collagen fiber content, smooth muscle cell proliferation, CD68 + macrophages, interleukin-6 expression, and the antiapoptotic mediators Bcl-2 and survivin. Conversely, expression of the proapoptotic mediator procaspase-3 and plasma VEGF increased, with no changes in PDGF. In the pulmonary artery, MSCs dampened the endothelial–mesenchymal transition. Conclusion In MCT-induced PAH, MSC therapy reduced lung vascular remodeling, thus improving hemodynamics. These beneficial effects were associated with increased levels of proapoptotic markers, mesenchymal-to-endothelial transition, reduced cell proliferation markers, and inflammation due to a shift away from the M1 phenotype.