Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Series TitleSeries Title
-
Reading LevelReading Level
-
YearFrom:-To:
-
More FiltersMore FiltersContent TypeItem TypeIs Full-Text AvailableSubjectPublisherSourceDonorLanguagePlace of PublicationContributorsLocation
Done
Filters
Reset
6
result(s) for
"Capiński, Marek, 1951-"
Sort by:
Measure, integral, and probability
by
Kopp, Peter Ekkehard
,
Capiński, Marek
in
Distribution (Probability theory
,
Integrals, Generalized
,
Mathematics
1999,1998
The central concepts in this book are Lebesgue measure and the Lebesgue integral. Their role as standard fare in UK undergraduate mathematics courses is not wholly secure; yet they provide the principal model for the development of the abstract measure spaces which underpin modern probability theory, while the Lebesgue function spaces remain the main sour ce of examples on which to test the methods of functional analysis and its many applications, such as Fourier analysis and the theory of partial differential equations. It follows that not only budding analysts have need of a clear understanding of the construction and properties of measures and integrals, but also that those who wish to contribute seriously to the applications of analytical methods in a wide variety of areas of mathematics, physics, electronics, engineering and, most recently, finance, need to study the underlying theory with some care. We have found remarkably few texts in the current literature which aim explicitly to provide for these needs, at a level accessible to current under graduates. There are many good books on modern prob ability theory, and increasingly they recognize the need for a strong grounding in the tools we develop in this book, but all too often the treatment is either too advanced for an undergraduate audience or else somewhat perfunctory.
The Black–Scholes Model
2012
The Black–Scholes option pricing model is the first and by far the best-known continuous-time mathematical model used in mathematical finance. Here, it provides a sufficiently complex, yet tractable, testbed for exploring the basic methodology of option pricing. The discussion of extended markets, the careful attention paid to the requirements for admissible trading strategies, the development of pricing formulae for many widely traded instruments and the additional complications offered by multi-stock models will appeal to a wide class of instructors. Students, practitioners and researchers alike will benefit from the book's rigorous, but unfussy, approach to technical issues. It highlights potential pitfalls, gives clear motivation for results and techniques and includes carefully chosen examples and exercises, all of which make it suitable for self-study.
Discrete models of financial markets
\"This book explains in simple settings the fundamental ideas of financial market modelling and derivative pricing, using the no-arbitrage principle. Relatively elementary mathematics leads to powerful notions and techniques - such as viability, completeness, self-financing and replicating strategies, arbitrage and equivalent martingale measures - which are directly applicable in practice. The general methods are applied in detail to pricing and hedging European and American options within the Cox-Ross-Rubinstein (CRR) binomial tree model. A simple approach to discrete interest rate models is included, which, though elementary, has some novel features. All proofs are written in a user-friendly manner, with each step carefully explained and following a natural flow of thought. In this way the student learns how to tackle new problems\"-- Provided by publisher.