Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
68 result(s) for "Cappellini, Enrico"
Sort by:
SPIN enables high throughput species identification of archaeological bone by proteomics
Species determination based on genetic evidence is an indispensable tool in archaeology, forensics, ecology, and food authentication. Most available analytical approaches involve compromises with regard to the number of detectable species, high cost due to low throughput, or a labor-intensive manual process. Here, we introduce “Species by Proteome INvestigation” (SPIN), a shotgun proteomics workflow for analyzing archaeological bone capable of querying over 150 mammalian species by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Rapid peptide chromatography and data-independent acquisition (DIA) with throughput of 200 samples per day reduce expensive MS time, whereas streamlined sample preparation and automated data interpretation save labor costs. We confirm the successful classification of known reference bones, including domestic species and great apes, beyond the taxonomic resolution of the conventional peptide mass fingerprinting (PMF)-based Zooarchaeology by Mass Spectrometry (ZooMS) method. In a blinded study of degraded Iron-Age material from Scandinavia, SPIN produces reproducible results between replicates, which are consistent with morphological analysis. Finally, we demonstrate the high throughput capabilities of the method in a high-degradation context by analyzing more than two hundred Middle and Upper Palaeolithic bones from Southern European sites with late Neanderthal occupation. While this initial study is focused on modern and archaeological mammalian bone, SPIN will be open and expandable to other biological tissues and taxa. Available methods to identify species from fragmented archaeological bone and remains suffer a trade-off between cost and resolution. Here, the authors present a workflow that uses automated sample preparation, 10 to 20 times faster data acquisition, and computerized data interpretation to make the technology applicable to large-scale studies.
Ancient and modern environmental DNA
DNA obtained from environmental samples such as sediments, ice or water (environmental DNA, eDNA), represents an important source of information on past and present biodiversity. It has revealed an ancient forest in Greenland, extended by several thousand years the survival dates for mainland woolly mammoth in Alaska, and pushed back the dates for spruce survival in Scandinavian ice-free refugia during the last glaciation. More recently, eDNA was used to uncover the past 50 000 years of vegetation history in the Arctic, revealing massive vegetation turnover at the Pleistocene/Holocene transition, with implications for the extinction of megafauna. Furthermore, eDNA can reflect the biodiversity of extant flora and fauna, both qualitatively and quantitatively, allowing detection of rare species. As such, trace studies of plant and vertebrate DNA in the environment have revolutionized our knowledge of biogeography. However, the approach remains marred by biases related to DNA behaviour in environmental settings, incomplete reference databases and false positive results due to contamination. We provide a review of the field.
Quantitative metaproteomics of medieval dental calculus reveals individual oral health status
The composition of ancient oral microbiomes has recently become accessible owing to advanced biomolecular methods such as metagenomics and metaproteomics, but the utility of metaproteomics for such analyses is less explored. Here, we use quantitative metaproteomics to characterize the dental calculus associated with the remains of 21 humans retrieved during the archeological excavation of the medieval (ca. 1100–1450 CE) cemetery of Tjærby, Denmark. We identify 3671 protein groups, covering 220 bacterial species and 81 genera across all medieval samples. The metaproteome profiles of bacterial and human proteins suggest two distinct groups of archeological remains corresponding to health-predisposed and oral disease-susceptible individuals, which is supported by comparison to the calculus metaproteomes of healthy living individuals. Notably, the groupings identified by metaproteomics are not apparent from the bioarchaeological analysis, illustrating that quantitative metaproteomics has the potential to provide additional levels of molecular information about the oral health status of individuals from archeological contexts. Mineralized plaque, or dental calculus, is a valuable reservoir of the ancient oral microbiome. Here, the authors use quantitative metaproteomics to analyze the dental calculus of 21 individuals from a medieval cemetery, identifying human and microbial proteins that shed light on their oral health status.
Protein sequences bound to mineral surfaces persist into deep time
Proteins persist longer in the fossil record than DNA, but the longevity, survival mechanisms and substrates remain contested. Here, we demonstrate the role of mineral binding in preserving the protein sequence in ostrich (Struthionidae) eggshell, including from the palaeontological sites of Laetoli (3.8 Ma) and Olduvai Gorge (1.3 Ma) in Tanzania. By tracking protein diagenesis back in time we find consistent patterns of preservation, demonstrating authenticity of the surviving sequences. Molecular dynamics simulations of struthiocalcin-1 and -2, the dominant proteins within the eggshell, reveal that distinct domains bind to the mineral surface. It is the domain with the strongest calculated binding energy to the calcite surface that is selectively preserved. Thermal age calculations demonstrate that the Laetoli and Olduvai peptides are 50 times older than any previously authenticated sequence (equivalent to ~16 Ma at a constant 10°C). The pattern of chemical reactions that break down the molecules that make our bodies is still fairly mysterious. Archaeologists and geologists hope that dead organisms (or artefacts made from them) might not decay entirely, leaving behind clues to their lives. We know that some molecules are more resistant than others; for example, fats are tough and survive for a long time while DNA is degraded very rapidly. Proteins, which are made of chains of smaller molecules called amino acids, are usually sturdier than DNA. Since the amino acid sequence of a protein reflects the DNA sequence that encodes it, proteins in fossils can help researchers to reconstruct how extinct organisms are related in cases where DNA cannot be retrieved. Time, temperature, burial environment and the chemistry of the fossil all influence how quickly a protein decays. However, it is not clear what mechanisms slow down decay so that full protein sequences can be preserved and identified after millions of years. As a result, it is difficult to know where to look for these ancient sequences. In the womb of ostriches, several proteins are responsible for assembling the minerals that make up the ostrich eggshell. These proteins become trapped tightly within the mineral crystals themselves. In this situation, proteins can potentially be preserved over geological time. Demarchi et al. have now studied 3.8 million-year-old eggshells found close to the equator and, despite the extent to which the samples have degraded, discovered fully preserved protein sequences. Using a computer simulation method called molecular dynamics, Demarchi et al. calculated that the protein sequences that are able to survive the longest are stabilized by strong binding to the surface of the mineral crystals. The authenticity of these sequences was tested thoroughly using a combination of several approaches that Demarchi et al. recommend using as a standard for ancient protein studies. Overall, it appears that biominerals are an excellent source of ancient protein sequences because mineral binding ensures survival. A systematic survey of fossil biominerals from different environments is now needed to assess whether these biomolecules have the potential to act as barcodes for interpreting the evolution of organisms.
Molecular signatures written in bone proteins of 79 AD victims from Herculaneum and Pompeii
An extensive proteomic analysis was performed on a set of 12 bones of human victims of the eruption that in AD 79 rapidly buried Pompeii and Herculaneum, allowing the detection of molecular signatures imprinted in the surviving protein components. Bone collagen survived the heat of the eruption, bearing a piece of individual biological history encoded in chemical modifications. Here we show that the human bone proteomes from Pompeii are more degraded than those from the inhabitants of Herculaneum, despite the latter were exposed to temperatures much higher than those experienced in Pompeii. The analysis of the specimens from Pompeii shows lower content of non-collagenous proteins, higher deamidation level and higher extent of collagen modification. In Pompeii, the slow decomposition of victims’ soft tissues in the natural dry–wet hydrogeological soil cycles damaged their bone proteome more than what was experienced at Herculaneum by the rapid vanishing of body tissues from intense heat, under the environmental condition of a permanent waterlogged burial context. Results herein presented are the first proteomic analyses of bones exposed to eruptive conditions, but also delivered encouraging results for potential biomarkers that might also impact future development of forensic bone proteomics.
Unlocking Ancient Protein Palimpsests
High-resolution, high-throughput mass spectrometry studies of ancient protein samples provide insights into protein function in the distant past. Over the past 30 years, ancient DNA studies have grown from a scientific curiosity into a powerful research tool with applications in molecular evolution, archaeology, paleontology, conservation genetics, and forensics. The analysis of ancient proteins has lagged behind that of ancient DNA, but recent developments in high-throughput, high-resolution mass spectrometry (MS) have the potential to provide the accuracy and robustness required for confident and reliable sequencing of ancient proteins. This methodology may allow biomolecular recovery to be extended further back in time, because DNA chains fall apart 10 times faster ( 1 ) than proteins ( 2 ). Furthermore, mass spectrometry enables investigation of protein expression specific for different tissues, developmental phases, or biological processes, including disease states.
Palaeoproteomic identification of the original binder and modern contaminants in distemper paints from Uvdal stave church, Norway
Two distemper paint samples taken from decorative boards in Uvdal stave church, Norway, were analysed using palaeoproteomics, with an aim of identifying their binder and possible contaminants. The results point at the use of calfskin to produce hide glue as the original paint binder, and are consistent with the instructions of binder production and resource allocation in the historical records of Norway. Although we did not observe any evidence of prior restoration treatments using protein-based materials, we found abundant traces of human saliva proteins, as well as a few oats and barley peptides, likely deposited together on the boards during their discovery in the 1970s. This work illustrates the need to fully consider contamination sources in palaeoproteomics and to inform those working with such objects about the potential for their contamination.
Species Identification of Archaeological Skin Objects from Danish Bogs: Comparison between Mass Spectrometry-Based Peptide Sequencing and Microscopy-Based Methods
Denmark has an extraordinarily large and well-preserved collection of archaeological skin garments found in peat bogs, dated to approximately 920 BC - AD 775. These objects provide not only the possibility to study prehistoric skin costume and technologies, but also to investigate the animal species used for the production of skin garments. Until recently, species identification of archaeological skin was primarily performed by light and scanning electron microscopy or the analysis of ancient DNA. However, the efficacy of these methods can be limited due to the harsh, mostly acidic environment of peat bogs leading to morphological and molecular degradation within the samples. We compared species assignment results of twelve archaeological skin samples from Danish bogs using Mass Spectrometry (MS)-based peptide sequencing, against results obtained using light and scanning electron microscopy. While it was difficult to obtain reliable results using microscopy, MS enabled the identification of several species-diagnostic peptides, mostly from collagen and keratins, allowing confident species discrimination even among taxonomically close organisms, such as sheep and goat. Unlike previous MS-based methods, mostly relying on peptide fingerprinting, the shotgun sequencing approach we describe aims to identify the complete extracted ancient proteome, without preselected specific targets. As an example, we report the identification, in one of the samples, of two peptides uniquely assigned to bovine foetal haemoglobin, indicating the production of skin from a calf slaughtered within the first months of its life. We conclude that MS-based peptide sequencing is a reliable method for species identification of samples from bogs. The mass spectrometry proteomics data were deposited in the ProteomeXchange Consortium with the dataset identifier PXD001029.
Paleoproteomic identification of the species used in fourteenth century gut-skin garments from the archaeological site of Nuulliit, Greenland
Until recently, the identification of the species of origin for skin and fur materials used in the production of archaeological clothing has been based on the analysis of macro- and microscopic morphological features and on the traditional knowledge of Indigenous groups. This approach, however, is not always applicable due to the deterioration of the archaeological objects. Paleoproteomics was used as an alternative approach to identify the species of origin of fifteen samples of various tissues from approximately 600-year-old garments found in Nuulliit, northern Greenland. Proteomics revealed that a limited group of marine and terrestrial mammals were used for clothing production. The results obtained from the analysis of multiple types of clothing and elements, such as sinew thread and gut skin, suggest that their applications were based on their properties. When conclusive assignment of a sample to a species via proteomics was not possible, the observation by transmitted light microscopy of feather and hair micromorphology, if not affected by diagenesis, was used to improve the identification. The proteomic characterization of animal materials used for clothing production in the Nuulliit archaeological context provides an insight into the practical knowledge and the strategies adopted by the local Indigenous community to exploit natural resources.
Geometric morphometrics and paleoproteomics enlighten the paleodiversity of Pongo
Pleistocene Pongo teeth show substantial variation in size and morphology, fueling taxonomic debates about the paleodiversity of the genus. We investigated prominent features of the enamel-dentine-junction junction (EDJ)–phylogenetically informative internal structures–of 71 fossil Pongo lower molars from various sites by applying geometric morphometrics and conducted paleoproteomic analyses from enamel proteins to attempt to identify extinct orangutan species. Forty-three orangutan lower molars representing Pongo pygmaeus and Pongo abelii were included for comparison. The shape of the EDJ was analyzed by placing five landmarks on the tip of the main dentine horns, and 142 semilandmarks along the marginal ridges connecting the dentine horns. Paleoproteomic analyses were conducted on 15 teeth of Late Pleistocene Pongo using high-resolution tandem mass spectrometry. The geometric morphometric results show variations in EDJ shape regarding aspects of the height and position of the dentine horns and connecting ridges. Despite the issue of molar position and sample size, modern molars are distinguished from fossil counterparts by their elongated tooth outline and narrowly positioned dentine horns. Proteomic results show that neither a distinction of P . pygmaeus and P . abelii , nor a consistent allocation of fossil specimens to extant species is feasible. Based on the EDJ shape, the (late) Middle to Late Pleistocene Pongo samples from Vietnam share the same morphospace, supporting the previous allocation to P . devosi , although substantial overlap with Chinese fossils could also indicate close affinities with P . weidenreichi . The hypothesis that both species represent one chronospecies cannot be ruled out. Two fossil specimens, one from Tam Hay Marklot (Laos, Late Pleistocene), and another from Sangiran (Java, Early to Middle Pleistocene), along with some specimens within the Punung sample (Java), exhibit affinities with Pongo abelii . The Punung fossils might represent a mix of early Late Pleistocene and later specimens (terminal Pleistocene to Holocene) related to modern Pongo . The taxonomy and phylogeny of the complete Punung sample needs to be further investigated.