Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
69
result(s) for
"Carda, Carmen"
Sort by:
Cannabinoid receptor expression in non-small cell lung cancer. Effectiveness of tetrahydrocannabinol and cannabidiol inhibiting cell proliferation and epithelial-mesenchymal transition in vitro
2020
Patients with non-small cell lung cancer (NSCLC) develop resistance to antitumor agents by mechanisms that involve the epithelial-to-mesenchymal transition (EMT). This necessitates the development of new complementary drugs, e.g., cannabinoid receptors (CB1 and CB2) agonists including tetrahydrocannabinol (THC) and cannabidiol (CBD). The combined use of THC and CBD confers greater benefits, as CBD enhances the effects of THC and reduces its psychotropic activity. We assessed the relationship between the expression levels of CB1 and CB2 to the clinical features of a cohort of patients with NSCLC, and the effect of THC and CBD (individually and in combination) on proliferation, EMT and migration in vitro in A549, H460 and H1792 lung cancer cell lines.
Expression levels of CB1, CB2, EGFR, CDH1, CDH2 and VIM were evaluated by quantitative reverse transcription-polymerase chain reaction. THC and CBD (10-100 μM), individually or in combination (1:1 ratio), were used for in vitro assays. Cell proliferation was determined by BrdU incorporation assay. Morphological changes in the cells were visualized by phase-contrast and fluorescence microscopy. Migration was studied by scratch recolonization induced by 20 ng/ml epidermal growth factor (EGF).
The tumor samples were classified according to the level of expression of CB1, CB2, or both. Patients with high expression levels of CB1, CB2, and CB1/CB2 showed increased survival reaching significance for CB1 and CB1/CB2 (p = 0.035 and 0.025, respectively). Both cannabinoid agonists inhibited the proliferation and expression of EGFR in lung cancer cells, and CBD potentiated the effect of THC. THC and CBD alone or in combination restored the epithelial phenotype, as evidenced by increased expression of CDH1 and reduced expression of CDH2 and VIM, as well as by fluorescence analysis of cellular cytoskeleton. Finally, both cannabinoids reduced the in vitro migration of the three lung cancer cells lines used.
The expression levels of CB1 and CB2 have a potential use as markers of survival in patients with NSCLC. THC and CBD inhibited the proliferation and expression of EGFR in the lung cancer cells studied. Finally, the THC/CBD combination restored the epithelial phenotype in vitro.
Journal Article
Dentin tubule orientation determines odontoblastic differentiation in vitro: A morphological study
by
Mata, Manuel
,
Peydró, Amando
,
Carda, Carmen
in
Accessibility
,
Biology and Life Sciences
,
Biomedical materials
2019
Odontoblasts are post-mitotic cells responsible for maintenance of the dentin, and are therefore important for dental health. In some cases, irreversible pulpitis leads to necrosis and consequently death of odontoblasts. Regenerative endodontics (RE) uses the concept of tissue engineering to restore the root canals to a healthy state, allowing for continued development of the root and surrounding tissue. Human dental pulp stem cells (hDPSCs) have been successfully used in RE to restore odontoblast function. Surface microgeometry is one of the most important factors involved in the induction of differentiation of hDPSCs into odontoblast-like cells. Although different authors have demonstrated the importance of a dentin-like surface with accessible dentin tubules to induce differentiation of hDPSCs, the ultrastructural characteristics of the cells and the secreted extracellular matrix have not been studied in depth. Here, we used an acellular dentin scaffold containing dentin tubules in different spatial geometries, which regulated their accessibility to cells. hDPSCs were cultured on the scaffolds for up to 6 weeks. Systematic characterization of differentiated cells was performed using both optical (hematoxylin and eosin, Masson trichrome, and immunohistochemical determination of dentin sialoprotein [DSSP]) and transmission electron microscopy. The results presented here indicated that cells grown on the dentin surface containing accessible dentin tubules developed a characteristic odontoblastic phenotype, with cellular processes similar to native odontoblasts. The cell organization and characteristics of secreted extracellular matrix were also similar to those of native dentin tissue. Cells grown on non-accessible dentin tubule surfaces secreted a more abundant and dense extracellular matrix, and developed a different phenotype consisting of secretory flat cells organized in layers. Cells grown far from the scaffold, i.e., directly on the culture well surface, developed a secretory phenotype probably influenced by biochemical factors released by the dentin scaffold or differentiated cells. The results presented here support the use of hDPSCs to regenerate dentin and show the utility of scaffold microgeometry for determining the differentiation and secretory phenotype of cultured cells.
Journal Article
Respiratory Syncytial Virus Inhibits Ciliagenesis in Differentiated Normal Human Bronchial Epithelial Cells: Effectiveness of N-Acetylcysteine
by
Sarrion, Irene
,
Mata, Manuel
,
Martinez, Isidoro
in
Abnormalities
,
Acetylcysteine
,
Acetylcysteine - pharmacology
2012
Persistent respiratory syncytial virus (RSV) infections have been associated with the exacerbation of chronic inflammatory diseases, including chronic obstructive pulmonary disease (COPD). This virus infects the respiratory epithelium, leading to chronic inflammation, and induces the release of mucins and the loss of cilia activity, two factors that determine mucus clearance and the increase in sputum volume. These alterations involve reactive oxygen species-dependent mechanisms. The antioxidant N-acetylcysteine (NAC) has proven useful in the management of COPD, reducing symptoms, exacerbations, and accelerated lung function decline. NAC inhibits RSV infection and mucin release in human A549 cells. The main objective of this study was to analyze the effects of NAC in modulating ciliary activity, ciliagenesis, and metaplasia in primary normal human bronchial epithelial cell (NHBEC) cultures infected with RSV. Our results indicated that RSV induced ultrastructural abnormalities in axonemal basal bodies and decreased the expression of β-tubulin as well as two genes involved in ciliagenesis, FOXJ1 and DNAI2. These alterations led to a decrease in ciliary activity. Furthermore, RSV induced metaplastic changes to the epithelium and increased the number of goblet cells and the expression of MUC5AC and GOB5. NAC restored the normal functions of the epithelium, inhibiting ICAM1 expression, subsequent RSV infection through mechanisms involving nuclear receptor factor 2, and the expression of heme oxygenase 1, which correlated with the restoration of the antioxidant capacity, the intracellular H(2)O(2) levels and glutathione content of NHBECs. The results presented in this study support the therapeutic use of NAC for the management of chronic respiratory diseases, including COPD.
Journal Article
In Vivo Articular Cartilage Regeneration Using Human Dental Pulp Stem Cells Cultured in an Alginate Scaffold: A Preliminary Study
by
Mata, Manuel
,
Zurriaga, Javier
,
Llano, Jose Javier Martin de
in
Aggrecan
,
Alginic acid
,
Analysis
2017
Osteoarthritis is an inflammatory disease in which all joint-related elements, articular cartilage in particular, are affected. The poor regeneration capacity of this tissue together with the lack of pharmacological treatment has led to the development of regenerative medicine methodologies including microfracture and autologous chondrocyte implantation (ACI). The effectiveness of ACI has been shown in vitro and in vivo, but the use of other cell types, including bone marrow and adipose-derived mesenchymal stem cells, is necessary because of the poor proliferation rate of isolated articular chondrocytes. In this investigation, we assessed the chondrogenic ability of human dental pulp stem cells (hDPSCs) to regenerate cartilage in vitro and in vivo. hDPSCs and primary isolated rabbit chondrocytes were cultured in chondrogenic culture medium and found to express collagen II and aggrecan. Both cell types were cultured in 3% alginate hydrogels and implanted in a rabbit model of cartilage damage. Three months after surgery, significant cartilage regeneration was observed, particularly in the animals implanted with hDPSCs. Although the results presented here are preliminary, they suggest that hDPSCs may be useful for regeneration of articular cartilage.
Journal Article
BMP-2 Enhances Osteogenic Differentiation of Human Adipose-Derived and Dental Pulp Stem Cells in 2D and 3D In Vitro Models
2022
Bone tissue provides support and protection to different organs and tissues. Aging and different diseases can cause a decrease in the rate of bone regeneration or incomplete healing; thus, tissue-engineered substitutes can be an acceptable alternative to traditional therapies. In the present work, we have developed an in vitro osteogenic differentiation model based on mesenchymal stem cells (MSCs), to first analyse the influence of the culture media and the origin of the cells on the efficiency of this process and secondly to extrapolate it to a 3D environment to evaluate its possible application in bone regeneration therapies. Two osteogenic culture media were used (one commercial from Stemcell Technologies and a second supplemented with dexamethasone, ascorbic acid, glycerol-2-phosphate, and BMP-2), with human cells of a mesenchymal phenotype from two different origins: adipose tissue (hADSCs) and dental pulp (hDPSCs). The expression of osteogenic markers in 2D cultures was evaluated in several culture periods by means of the immunofluorescence technique and real-time gene expression analysis, taking as reference MG-63 cells of osteogenic origin. The same strategy was extrapolated to a 3D environment of polylactic acid (PLA), with a 3% alginate hydrogel. The expression of osteogenic markers was detected in both hADSCs and hDPSCs, cultured in either 2D or 3D environments. However, the osteogenic differentiation of MSCs was obtained based on the culture medium and the cell origin used, since higher osteogenic marker levels were found when hADSCs were cultured with medium supplemented with BMP-2. Furthermore, the 3D culture used was suitable for cell survival and osteogenic induction.
Journal Article
Chondrogenic Potential of Human Dental Pulp Stem Cells Cultured as Microtissues
2021
Several tissue engineering stem cell-based procedures improve hyaline cartilage repair. In this work, the chondrogenic potential of dental pulp stem cell (DPSC) organoids or microtissues was studied. After several weeks of culture in proliferation or chondrogenic differentiation media, synthesis of aggrecan and type II and I collagen was immunodetected, and SOX9, ACAN, COL2A1, and COL1A1 gene expression was analysed by real-time RT-PCR. Whereas microtissues cultured in proliferation medium showed the synthesis of aggrecan and type II and I collagen at the 6th week of culture, samples cultured in chondrogenic differentiation medium showed an earlier and important increase in the synthesis of these macromolecules after 4 weeks. Gene expression analysis showed a significant increase of COL2A1 after 3 days of culture in chondrogenic differentiation medium, while COL1A1 was highly expressed after 14 days. Cell-cell proximity promotes the chondrogenic differentiation of DPSCs and important synthesis of hyaline chondral macromolecules.
Journal Article
Alginate-Agarose Hydrogels Improve the In Vitro Differentiation of Human Dental Pulp Stem Cells in Chondrocytes. A Histological Study
by
Oliver-Ferrándiz, María
,
Martínez-Ramos, Cristina
,
Mata, Manuel
in
agarose
,
Aggrecan
,
alginate
2021
Matrix-assisted autologous chondrocyte implantation (MACI) has shown promising results for cartilage repair, combining cultured chondrocytes and hydrogels, including alginate. The ability of chondrocytes for MACI is limited by different factors including donor site morbidity, dedifferentiation, limited lifespan or poor proliferation in vitro. Mesenchymal stem cells could represent an alternative for cartilage regeneration. In this study, we propose a MACI scaffold consisting of a mixed alginate-agarose hydrogel in combination with human dental pulp stem cells (hDPSCs), suitable for cartilage regeneration. Scaffolds were characterized according to their rheological properties, and their histomorphometric and molecular biology results. Agarose significantly improved the biomechanical behavior of the alginate scaffolds. Large scaffolds were manufactured, and a homogeneous distribution of cells was observed within them. Although primary chondrocytes showed a greater capacity for chondrogenic differentiation, hDPSCs cultured in the scaffolds formed large aggregates of cells, acquired a rounded morphology and expressed high amounts of type II collagen and aggrecan. Cells cultured in the scaffolds expressed not only chondral matrix-related genes, but also remodeling proteins and chondrocyte differentiation factors. The degree of differentiation of cells was proportional to the number and size of the cell aggregates that were formed in the hydrogels.
Journal Article
IgA-Dominant Infection-Associated Glomerulonephritis Following SARS-CoV-2 Infection
by
Forner, María J.
,
D’Marco, Luis
,
Juan, Isabel
in
ACE2
,
acute kidney injury
,
Aged, 80 and over
2021
The renal involvement of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been reported. The etiology of kidney injury appears to be tubular, mainly due to the expression of angiotensin-converting enzyme 2, the key joint receptor for SARS-CoV-2; however, cases with glomerular implication have also been documented. The multifactorial origin of this renal involvement could include virus-mediated injury, cytokine storm, angiotensin II pathway activation, complement dysregulation, hyper-coagulation, and microangiopathy. We present the renal histological findings from a patient who developed acute kidney injury and de novo nephrotic syndrome, highly suggestive of acute IgA-dominant infection-associated glomerulonephritis (IgA-DIAGN) after SARS-CoV-2 infection, as evidenced by the presence of this virus detected in the renal tissue of the patient via immunohistochemistry assay. In summary, we document the first case of IgA-DIAGN associated to SARS-CoV-2. Thus, SARS-CoV-2 S may act as a super antigen driving the development of multisystem inflammatory syndrome as well as cytokine storm in patients affected by COVID-19, reaching the glomerulus and leading to the development of this novel IgA-DIAGN.
Journal Article
IFT46 Expression in the Nasal Mucosa of Primary Ciliary Dyskinesia Patients: Preliminary Study
2021
Background Primary ciliary dyskinesia (PCD) is characterised by an imbalance in mucociliary clearance leading to chronic respiratory infections. Cilia length is considered to be a contributing factor in cilia movement. Recently, IFT46 protein has been related to cilia length. Therefore, this work aims to study IFT46 expression in a PCD patients cohort and analyse its relationship with cilia length and function, as it was not previously described. Materials and methods The expression of one intraflagellar transport (IFT46) and two regulating ciliary architecture (FOXJ1 and DNAI2) genes, as well as cilia length of 27 PCD patients, were measured. PCD patients were diagnosed based on clinical data, and cilia function and ultrastructure. Gene expression was estimated by real-time RT-PCR and cilia length by electron microscopy in nasal epithelium biopsies. Results and conclusions: While IFT46 expression was only diminished in patients with short cilia, FOXJ1, and DNAI2 expression were reduced in all PCD patient groups compared to controls levels. Among the PCD patients, cilia were short in 44% (5.9 ± 0.70 µm); nine of these (33% from the total) patients’ cilia also had an abnormal ultrastructure. Cilia length was normal in 33% of patients (6.4 ± 0.39 µm), and only three patients’ biopsies indicated decreased expression of dynein.
Journal Article
Wharton's Jelly Stem Cells: A Novel Cell Source for Oral Mucosa and Skin Epithelia Regeneration
by
Carmona, Ramón
,
González-Andrades, Miguel
,
Garzón, Ingrid
in
Adult stem cells
,
Animals
,
Biopsy
2013
This study examined the capability of human umbilical cord Wharton's jelly stem cells (HWJSCs) to differentiate in vitro and in vivo to oral mucosa and skin epithelial cells using a bioactive three‐dimensional model that mimics the native epithelial‐mesenchymal interaction. The HWJSCs were unable to fully differentiate to epithelial cells in vitro but were able to stratify and to express typical markers of epithelial differentiation, showing specific surface patterns. These results suggest that HWJSCs have the potential to differentiate to oral mucosa and skin epithelial cells in vivo and could be an appropriate novel cell source for the development of human oral mucosa and skin in tissue engineering protocols.
Perinatal stem cells such as human umbilical cord Wharton's jelly stem cells (HWJSCs) are excellent candidates for tissue engineering because of their proliferation and differentiation capabilities. However, their differentiation potential into epithelial cells at in vitro and in vivo levels has not yet been reported. In this work we have studied the capability of HWJSCs to differentiate in vitro and in vivo to oral mucosa and skin epithelial cells using a bioactive three‐dimensional model that mimics the native epithelial‐mesenchymal interaction. To achieve this, primary cell cultures of HWJSCs, oral mucosa, and skin fibroblasts were obtained in order to generate a three‐dimensional heterotypical model of artificial oral mucosa and skin based on fibrin‐agarose biomaterials. Our results showed that the cells were unable to fully differentiate to epithelial cells in vitro. Nevertheless, in vivo grafting of the bioactive three‐dimensional models demonstrated that HWJSCs were able to stratify and to express typical markers of epithelial differentiation, such as cytokeratins 1, 4, 8, and 13, plakoglobin, filaggrin, and involucrin, showing specific surface patterns. Electron microscopy analysis confirmed the presence of epithelial cell‐like layers and well‐formed cell‐cell junctions. These results suggest that HWJSCs have the potential to differentiate to oral mucosa and skin epithelial cells in vivo and could be an appropriate novel cell source for the development of human oral mucosa and skin in tissue engineering protocols.
Journal Article