Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
82 result(s) for "Cardinale, Vincenzo"
Sort by:
Cholangiocarcinoma 2020: the next horizon in mechanisms and management
Cholangiocarcinoma (CCA) includes a cluster of highly heterogeneous biliary malignant tumours that can arise at any point of the biliary tree. Their incidence is increasing globally, currently accounting for ~15% of all primary liver cancers and ~3% of gastrointestinal malignancies. The silent presentation of these tumours combined with their highly aggressive nature and refractoriness to chemotherapy contribute to their alarming mortality, representing ~2% of all cancer-related deaths worldwide yearly. The current diagnosis of CCA by non-invasive approaches is not accurate enough, and histological confirmation is necessary. Furthermore, the high heterogeneity of CCAs at the genomic, epigenetic and molecular levels severely compromises the efficacy of the available therapies. In the past decade, increasing efforts have been made to understand the complexity of these tumours and to develop new diagnostic tools and therapies that might help to improve patient outcomes. In this expert Consensus Statement, which is endorsed by the European Network for the Study of Cholangiocarcinoma, we aim to summarize and critically discuss the latest advances in CCA, mostly focusing on classification, cells of origin, genetic and epigenetic abnormalities, molecular alterations, biomarker discovery and treatments. Furthermore, the horizon of CCA for the next decade from 2020 onwards is highlighted.Cholangiocarcinoma (CCA) comprises heterogeneous biliary malignant tumours, and their incidence is increasing worldwide. This expert Consensus Statement, endorsed by the ENS-CCA, summarizes the latest advances in CCA, including classification, genetics and treatment, and provides recommendations for CCA management and priorities across basic, translational and clinical research.
Current and novel therapeutic opportunities for systemic therapy in biliary cancer
Biliary tract cancers (BTCs) are a group of rare and aggressive malignancies that arise in the biliary tree within and outside the liver. Beyond surgical resection, which is beneficial for only a small proportion of patients, current strategies for treating patients with BTCs include chemotherapy, as a single agent or combination regimens, in the adjuvant and palliative setting. Increased characterisation of the molecular landscape of these tumours has facilitated the identification of molecular vulnerabilities, such as IDH mutations and FGFR fusions, that can be exploited for the treatment of BTC patients. Beyond targeted therapies, active research avenues explore the development of novel therapeutics that target the crosstalk between cancer and stroma, the cellular pathways involved in the regulation of cell death, the chemoresistance phenotype and the dysregulation of RNA. In this review, we discuss the therapeutic opportunities currently available in the management of BTC patients, and explore the strategies that can support the implementation of precision oncology in BTCs, including novel molecular targets, liquid biopsies and patient-derived predictive tools.
Cholangiocarcinoma: current knowledge and future perspectives consensus statement from the European Network for the Study of Cholangiocarcinoma (ENS-CCA)
Cholangiocarcinomas are a heterogeneous group of bile duct cancers and the second most common primary liver tumour worldwide. In this Consensus statement, the newly formed European Network for the Study of Cholangiocarcinoma (ENS-CCA) detail the classification, pathophysiology and underlying mechanisms, and current therapies for cholangiocarcinoma, as well as future perspectives. Cholangiocarcinoma (CCA) is a heterogeneous group of malignancies with features of biliary tract differentiation. CCA is the second most common primary liver tumour and the incidence is increasing worldwide. CCA has high mortality owing to its aggressiveness, late diagnosis and refractory nature. In May 2015, the “European Network for the Study of Cholangiocarcinoma” (ENS-CCA: www.enscca.org or www.cholangiocarcinoma.eu ) was created to promote and boost international research collaboration on the study of CCA at basic, translational and clinical level. In this Consensus Statement, we aim to provide valuable information on classifications, pathological features, risk factors, cells of origin, genetic and epigenetic modifications and current therapies available for this cancer. Moreover, future directions on basic and clinical investigations and plans for the ENS-CCA are highlighted.
Metformin exerts anti-cancerogenic effects and reverses epithelial-to-mesenchymal transition trait in primary human intrahepatic cholangiocarcinoma cells
Intrahepatic cholangiocarcinoma (iCCA) is a highly aggressive cancer with marked resistance to chemotherapeutics without therapies. The tumour microenvironment of iCCA is enriched of Cancer-Stem-Cells expressing Epithelial-to-Mesenchymal Transition (EMT) traits, being these features associated with aggressiveness and drug resistance. Treatment with the anti-diabetic drug Metformin, has been recently associated with reduced incidence of iCCA. We aimed to evaluate the anti-cancerogenic effects of Metformin in vitro and in vivo on primary cultures of human iCCA. Our results showed that Metformin inhibited cell proliferation and induced dose- and time-dependent apoptosis of iCCA. The migration and invasion of iCCA cells in an extracellular bio-matrix was also significantly reduced upon treatments. Metformin increased the AMPK and FOXO3 and induced phosphorylation of activating FOXO3 in iCCA cells. After 12 days of treatment, a marked decrease of mesenchymal and EMT genes and an increase of epithelial genes were observed. After 2 months of treatment, in order to simulate chronic administration, Cytokeratin-19 positive cells constituted the majority of cell cultures paralleled by decreased Vimentin protein expression. Subcutaneous injection of iCCA cells previously treated with Metformin, in Balb/c-nude mice failed to induce tumour development. In conclusion, Metformin reverts the mesenchymal and EMT traits in iCCA by activating AMPK-FOXO3 related pathways suggesting it might have therapeutic implications.
The biliary tree—a reservoir of multipotent stem cells
This Perspectives describes the characteristics of stem and progenitor cells in the liver, biliary tree and pancreas. A hypothetical model of maturational cell lineages is presented, highlighting the common embryological origin of these organs. The potential of these stem and progenitor cells in regenerative medicine is discussed, along with their role in the pathophysiology and oncogenesis of midgut organs. The biliary tree is composed of intrahepatic and extrahepatic bile ducts, lined by mature epithelial cells called cholangiocytes, and contains peribiliary glands deep within the duct walls. Branch points, such as the cystic duct, perihilar and periampullar regions, contain high numbers of these glands. Peribiliary glands contain multipotent stem cells, which self-replicate and can differentiate into hepatocytes, cholangiocytes or pancreatic islets, depending on the microenvironment. Similar cells—presumably committed progenitor cells—are found in the gallbladder (which lacks peribiliary glands). The stem and progenitor cell characteristics indicate a common embryological origin for the liver, biliary tree and pancreas, which has implications for regenerative medicine as well as the pathophysiology and oncogenesis of midgut organs. This Perspectives article describes a hypothetical model of cell lineages starting in the duodenum and extending to the liver and pancreas, and thought to contribute to ongoing organogenesis throughout life.
Contribution of Resident Stem Cells to Liver and Biliary Tree Regeneration in Human Diseases
Two distinct stem/progenitor cell populations of biliary origin have been identified in the adult liver and biliary tree. Hepatic Stem/progenitor Cells (HpSCs) are bipotent progenitor cells located within the canals of Hering and can be differentiated into mature hepatocytes and cholangiocytes; Biliary Tree Stem/progenitor Cells (BTSCs) are multipotent stem cells located within the peribiliary glands of large intrahepatic and extrahepatic bile ducts and able to differentiate into hepatic and pancreatic lineages. HpSCs and BTSCs are endowed in a specialized niche constituted by supporting cells and extracellular matrix compounds. The actual contribution of these stem cell niches to liver and biliary tree homeostatic regeneration is marginal; this is due to the high replicative capabilities and plasticity of mature parenchymal cells (i.e., hepatocytes and cholangiocytes). However, the study of human liver and biliary diseases disclosed how these stem cell niches are involved in the regenerative response after extensive and/or chronic injuries, with the activation of specific signaling pathways. The present review summarizes the contribution of stem/progenitor cell niches in human liver diseases, underlining mechanisms of activation and clinical implications, including fibrogenesis and disease progression.
Assessing Risk Acceptability and Tolerability in Italian Tunnels with the Quantum Gu@larp Model
Road tunnels are associated with numerous risks including traffic accidents and fires, posing threats to individual or group users. Key risk indicators such as Risk Quantum, Individual Risk, Societal Risk, and Expected Number of Fatalities are instrumental in evaluating the level of risk exposure. These indicators empower Rights-Holders and Duty-Holders to report hazards, prevent disasters, and implement timely remedial measures. A crucial indicator, the Scenario Risk Quantum, has its roots in the forensic evaluation of responsibility in a fatal tunnel accident in the UK since 1949. The Quantum of Risk of each design scenario, reasonably selected among rational and practicable possibilities, has both a deterministic and probabilistic character. The Risk Tolerability and Acceptability criteria are modelled according to risk indicators by selecting the parameters according to ethical principles and societal policy. Scenarios are meticulously identified, described, probabilised and assigned probabilities prior to the quantitative risk analysis. These risk indicators are integral to the risk assessment process. This article delves into the understanding of these indicators within the context of Italian road tunnels, employing the Quantum Gu@larp Model to analyse Risk Acceptability and Tolerability.
SEISMONOISY: A Quasi-Real-Time Seismic Noise Network Monitoring System
This paper introduces SEISMONOISY, an application designed for monitoring the spatiotemporal characteristic and variability of the seismic noise of an entire seismic network with a quasi-real-time monitoring approach. Actually, we have applied the developed system to monitor 12 seismic networks distributed throughout the Italian territory. These networks include the Rete Sismica Nazionale (RSN) as well as other regional networks with smaller coverage areas. Our noise monitoring system uses the methods of Spectral Power Density (PSD) and Probability Density Function (PDF) applied to 12 h long seismic traces in a 24 h cycle for each station, enabling the extrapolation of noise characteristics at seismic stations after a Seismic Noise Level Index (SNLI), which takes into account the global seismic noise model, is derived. The SNLI value can be used for different applications, including network performance evaluation, the identification of operational problems, site selection for new installations, and for scientific research applications (e.g., volcano monitoring, identification of active seismic sequences, etc.). Additionally, it aids in studying the main noise sources across different frequency bands and changes in the characteristics of background seismic noise over time.
Simulated microgravity promotes the formation of tridimensional cultures and stimulates pluripotency and a glycolytic metabolism in human hepatic and biliary tree stem/progenitor cells
Many pivotal biological cell processes are affected by gravity. The aim of our study was to evaluate biological and functional effects, differentiation potential and exo-metabolome profile of simulated microgravity (SMG) on human hepatic cell line (HepG2) and human biliary tree stem/progenitor cells (hBTSCs). Both hBTSCs and HepG2 were cultured in a weightless and protected environment SGM produced by the Rotary Cell Culture System (Synthecon) and control condition in normal gravity (NG). Self-replication and differentiation toward mature cells were determined by culturing hBTSCs in Kubota’s Medium (KM) and in hormonally defined medium (HDM) tailored for hepatocyte differentiation. The effects on the expression and cell exo-metabolome profiles of SMG versus NG cultures were analyzed. SMG promotes tridimensional (3D) cultures of hBTSCs and HepG2. Significative increase of stemness gene expression (p < 0.05) has been observed in hBTSCs cultured in SMG when compared to NG condition. At the same time, the expression of hepatocyte lineage markers in hBTSCs differentiated by HDM was significantly lower (p < 0.05) in SMG compared to NG, demonstrating an impaired capability of hBTSCs to differentiate in vitro toward mature hepatocytes when cultured in SMG condition. Furthermore, in HepG2 cells the SMG caused a lower (p < 0.05 vs controls) transcription of CYP3A4, a marker of late-stage (i.e. Zone 3) hepatocytes. Exo-metabolome NMR-analysis showed that both cell cultures consumed a higher amount of glucose and lower glutamate in SMG respect to NG (p < 0.05). Moreover, hBTSCs media cultures resulted richer of released fermentation (lactate, acetate) and ketogenesis products (B-hydroxybutyrate) in SGM (p < 0.05) than NG. While, HepG2 cells showed higher consumption of amino acids and release of ketoacids (3-Methyl-2-oxovalerate, 2-oxo-4-methyl-valerate) and formiate with respect to normogravity condition (p < 0.05). Based on our results, SMG could be helpful for developing hBTSCs-derived liver devices. In conclusion, SMG favored the formation of hBTSCs and HepG2 3D cultures and the maintenance of stemness contrasting cell differentiation; these effects being associated with stimulation of glycolytic metabolism. Interestingly, the impact of SMG on stem cell biology should be taken into consideration for workers involved in space medicine programs.
Model of fibrolamellar hepatocellular carcinomas reveals striking enrichment in cancer stem cells
The aetiology of human fibrolamellar hepatocellular carcinomas (hFL-HCCs), cancers occurring increasingly in children to young adults, is poorly understood. We present a transplantable tumour line, maintained in immune-compromised mice, and validate it as a bona fide model of hFL-HCCs by multiple methods. RNA-seq analysis confirms the presence of a fusion transcript (DNAJB1-PRKACA) characteristic of hFL-HCC tumours. The hFL-HCC tumour line is highly enriched for cancer stem cells as indicated by limited dilution tumourigenicity assays, spheroid formation and flow cytometry. Immunohistochemistry on the hFL-HCC model, with parallel studies on 27 primary hFL-HCC tumours, provides robust evidence for expression of endodermal stem cell traits. Transcriptomic analyses of the tumour line and of multiple, normal hepatic lineage stages reveal a gene signature for hFL-HCCs closely resembling that of biliary tree stem cells—newly discovered precursors for liver and pancreas. This model offers unprecedented opportunities to investigate mechanisms underlying hFL-HCCs pathogenesis and potential therapies. With no cell lines available, investigating the aetiology of human fibrolamellar hepatocellular carcinomas (hFL-HCCs) has proved problematic. Here, Oikawa et al . establish a model of hFL-HCCs as a transplantable tumour line maintained in immune-compromised mice, which proves rich in cancer stem cells.