Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
169
result(s) for
"Carillo, M."
Sort by:
Space Charge Forces analytical model for emittance compensation
2024
Space charge forces represent main induced effects in an RF-injector that degrade the beam quality. In this scenario the laser distribution sent on the photocathode acquires an important role in the emittance compensation process, as the slice analysis shows. Starting from the preliminary studies performed on [1], a novel semi-analytical model of space charge forces is proposed in detail for bunch with arbitrary charge distribution to derive expressions of self-induced forces. The performance of the fields at low energy regime (as the field has not expired RF forces) is under present analysis, we can investigate use of this model in low charge regime. Further, the model has been bench-marked with the behavior of the distributions present in the literature and studied for new ones. It has also been applied for the study of the optimization of a C-band hybrid photoinjector now being commissioned, thus explaining the factor two reduction of the emittance observed at the exit of the gun by changing the initial distribution at the cathode.
Journal Article
Characterization of plasma-discharge Capillaries for Plasma-based Particle Acceleration
2024
Novel particle accelerators based on plasma technology allow a drastic reduction in size, due to the high accelerating field established inside plasmas, which are created and confined by specific devices. Plasma Wakefield Acceleration experiments are performed at the SPARC_LAB test facility (Laboratori Nazionali di Frascati - INFN) by using gas-filled capillaries, in which the plasma formation is achieved by ionizing hydrogen gas through high voltage pulses. In this work, the characterization of gas-filled plasma-discharge capillaries is presented. Several geometrical configurations are tested, including capillaries with different channel shapes and arrangement of inlets positions for the gas injection. Such configurations are designed in order to enhance the uniformity of the plasma density distribution along the plasma channel, which is necessary to improve particle beam acceleration. Plasma sources are characterized by means of the spectroscopic technique based on the Stark broadening method, which allows to measure the evolution of the plasma density profile along the channel. In addition, the CFD software OpenFoam is used to simulate the dynamics of the neutral gas during the filling of the capillary.
Journal Article
Recovery of hydrogen plasma at the sub-nanosecond timescale in a plasma-wakefield accelerator
2024
Plasma wakefield acceleration revolutionized the field of particle accelerators by generating gigavolt-per-centimeter fields. To compete with conventional radio-frequency (RF) accelerators, plasma technology must demonstrate operation at high repetition rates, with a recent research showing feasibility at megahertz levels using an Argon source that recovered after about 60 ns. Here we report about a proof-of-principle experiment that demonstrates the recovery of a Hydrogen plasma at the sub-nanosecond timescale. The result is obtained with a pump-and-probe setup and has been characterized for a wide range of plasma densities. We observed that large plasma densities reestablish their initial state soon after the injection of the pump beam ( < 0.7 ns). Conversely, at lower densities we observe the formation of a local dense plasma channel affecting the probe beam dynamics even at long delay times ( > 13 ns). The results are supported with numerical simulations and represent a step forward for the next-generation of compact high-repetition rate accelerators.
The authors report about a proof-of-principle experiment that demonstrates the recovery of a Hydrogen plasma accelerator at the sub-nanosecond timescale. The result is obtained with a pump-andprobe setup and represent a step forward for the next-generation of compact high-repetition rate plasma-based accelerators.
Journal Article
Design and Test of C-band Linac Prototypes for Electron FLASH Radiotherapy
by
Faillace, L.
,
Migliorati, M.
,
Di Francesco, M.
in
C band
,
Electromagnetic properties
,
Electron energy
2024
Flash Therapy is a revolution in cancer cure since it spares healthy tissue from the damage of ionization radiations without decreasing its effectiveness in tumor control. To allow the implementation of the FLASH therapy concept into actual clinical use and treat deep tumors, Very High Electron Energy (VHEE) should be achieved in a range of 50-150 MeV. In the framework of the VHEE project carried out at Sapienza University, in collaboration with INFN, we investigate the main issues in designing a compact C band (5.712 GHz) electron linacs for FLASH Radiotherapy. In this paper, we describe the design strategy, the electromagnetic properties, and the first prototypes of the RF structures to be tested at Sapienza University.
Journal Article
High field hybrid photoinjector electron source for advanced light source applications
2022
The production of high spectral brilliance radiation from electron beam sources depends critically on the electron beam qualities. One must obtain very high electron beam brightness, implying simultaneous high peak current and low emittance. These attributes are enabled through the use of very high field acceleration in a radio-frequency (rf) photoinjector source. Despite the high fields currently utilized, there is a limit on the achievable peak current in high brightness operation, in the range of tens of Ampere. This limitation can be overcome by the use of a hybrid standing wave/traveling wave structure; the standing wave portion provides acceleration at a high field from the photocathode, while the traveling wave part yields strong velocity bunching. This approach is explored here in a C-band scenario, at field strengths (>100MV/m) at the current state-of-the-art. It is found that one may arrive at an electron beam with many hundreds of Amperes with well-sub-micron normalized emittance. This extremely compact injector system also possesses attractive simplification of the rf distribution system by eliminating the need for an rf circulator. We explore the use of this device in a compact 400 MeV-class source, driving both inverse Compton scattering and free-electron laser radiation sources with unique, attractive properties.
Journal Article
Healthy Vinton: A Health Impact Assessment Focused on Water and Sanitation in a Small Rural Town on the U.S.-Mexico Border
2015
We conducted a Health Impact Assessment (HIA) focused on water and sanitation in Vinton, TX, a small rural town on the U.S./Mexico Border. We present the Vinton HIA as a case study to inform the practice of HIA in rural limited resource communities with higher than average levels of unemployment and poverty, and limited infrastructure. Household surveys, focus groups, and interviews provided quantitative and qualitative data on water sources and quality, sanitation practices, and community health. We found that some of the current water sources in Vinton did not meet drinking water standards for total dissolved solids and arsenic; the majority of septic tanks were not managed properly; and there was a short-term risk of water scarcity due to prolonged drought in the region. Prevalent ailments reported by participants included stomach problems, diarrhea, and skin problems. These ailments can be related to arsenic and/or biological organisms in water. The positive direct and indirect health impacts of improved water and sanitation in Vinton included: reduced gastrointestinal illnesses and skin disorders; improved water quality, quantity, and pressure; reduced risks from failing septic systems; increased property value; potential economic growth; and enhanced quality of life. The negative direct and indirect impacts included: residents’ initial and monthly costs; increased property taxes; increased debt by local government; and the need for ongoing support from changing elected decision makers. The unique challenges in completing this HIA included: (a) limited available data; (b) a culture of fear and distrust among residents; (c) residents’ lack of education, awareness, and civic discourse regarding water and sanitation issues and their impact on public health; and (d) lack of civic discourse and participation in the democratic process. An important outcome of the HIA was the characterization of local water supplies, which motivated and empowered the community members to become more involved in civic discourse concerning their water supplies. Results are transferable to similar low-income rural communities worldwide where residents are lacking in information about their water supplies and in political “voice”.
Journal Article
Beam dynamics optimization of EuPRAXIA@SPARC_LAB RF injector
2024
At EuPRAXIA@SPARC_LAB an X-ray FEL user facility is driven by a plasma accelerator in the particle-driven configuration where an ultra-relativistic beam, the driver, through a plasma generates a wake of charge density useful for accelerating a witness beam. The electron bunches are generated through the so-called comb technique in an RF injector that consists of a 1.6-cell S-band gun followed by four S-band TW accelerating structures. The main working point foresees a 30pC witness and a 200pC driver longitudinally compressed in the first accelerating structure operated in the velocity-bunching regime, which allows to accelerate and manipulate the beam to reach proper transverse and longitudinal parameters. The optimization of the witness emittance is performed with additional magnetic field around the gun and the velocity bunching S-band structures and by shaping the laser pulse at the cathode. The paper reports on beam dynamics studies performed also with the insertion of an X-band RF cavity after the gun that is proposed to shape the beam current distribution and stabilize it with respect to RF jitters.
Journal Article
Advanced Studies for the Dynamics of High Brightness Electron Beams with the Code MILES
2024
High brightness electron beams enable a wide spectrum of applications ranging from short wavelength radiation sources to high gradient wakefield acceleration. The rich dynamics that are intrinsic in charged particles accelerated in complex systems require a careful description in the analysis and design of a given machine, particularly regarding its stability. Numerous computer codes are in use by the accelerator community for such purposes. In particular, MILES is a simple tracking code we have developed that allows fast evaluations of collective effects in RF linacs. In this paper we extend the simple models previously developed to describe specific, diverse applications that can benefit from the fast simulation tools developed in MILES. Examples of this kind include particle driven acceleration schemes in a plasma where driver and witness beams propagate in the “comb” pulse-train configuration. Specifically, we investigate the self-induced fields excited within the X-band rf-linac stage of EuPRAXIA@SPARC_LAB. Further, we discuss additional advanced topics such as resistive wall wakefield effects in planar FEL undulators and their impact on the radiation emitted.
Journal Article
Space charge analysis for low energy photoinjector
2023
Beam dynamics studies are performed in the context of a C-Band hybrid photo-injector project developed by a collaboration between UCLA/Sapienza/INFN-LNF/RadiaBeam [1, 2]. These studies aim to explain beam behaviour through the beam-slice evolution, using analytical and numerical approaches. An understanding of the emittance oscillations is obtained starting from the slice analysis, which allows correlation of the position of the emittance minima with the slope of the slices in the transverse phase space (TPS). At the end, a significant reduction in the normalized emittance is obtained by varying the transverse shape of the beam while assuming a longitudinal Gaussian distribution. Indeed, the emittance growth due to nonlinear space-charge fields has been found to occur immediately after moment of the beam emission from the cathode, giving insight into the optimum laser profile needed for minimizing the emittance.
Journal Article
Studies of a Ka-band high power klystron amplifier at INFN-LNF
by
Marrese, F
,
Spataro, B
,
Bosco, F
in
Electric fields
,
Extremely high frequencies
,
High power microwaves
2023
In the framework of the Compact Light XLS project [1], a Ka-band linearizer with electric field ranging from 100 to 150 MV/m is requested [2, 3, 4]. In order to feed this structure, a proper Ka-band high power klystron amplifier with a high efficiency is needed. This paper reports a possible solution for a klystron amplifier operating on the TM 010 mode at 36 GHz, the third harmonic of the 12 GHz linac frequency, with an efficiency of 44% and 10.6 MW radiofrequency output power. We discuss also here the high-power DC gun with the related magnetic focusing system, the RF beam dynamics and finally the multiphysics analysis of a high-power microwave window for a Ka-band klystron providing 16 MW of peak power.
Journal Article