Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
501
result(s) for
"Carniti, P."
Sort by:
The COSINUS project: perspectives of a NaI scintillating calorimeter for dark matter search
2016
The R&D project COSINUS (Cryogenic Observatory for SIgnatures seen in Next-generation Underground Searches) aims to develop a cryogenic scintillating calorimeter using an undoped NaI-crystal as target for direct dark matter search. Dark matter particles interacting with the detector material generate both a phonon signal and scintillation light. While the phonon signal provides a precise determination of the deposited energy, the simultaneously measured scintillation light allows for particle identification on an event-by-event basis, a powerful tool to study material-dependent interactions, and to suppress backgrounds. Using the same target material as the DAMA/LIBRA collaboration, the COSINUS technique may offer a unique possibility to investigate and contribute information to the presently controversial situation in the dark matter sector. We report on the dedicated design planned for the NaI proof-of-principle detector and the objectives of using this detection technique in the light of direct dark matter detection.
Journal Article
Background model of the CUPID-0 experiment
2019
CUPID-0 is the first large mass array of enriched Zn\\[^{82}\\]Se scintillating low temperature calorimeters, operated at LNGS since 2017. During its first scientific runs, CUPID-0 collected an exposure of 9.95 kg year. Thanks to the excellent rejection of \\[\\alpha \\] particles, we attained the lowest background ever measured with thermal detectors in the energy region where we search for the signature of \\[^{82}\\hbox {Se}\\] neutrinoless double beta decay. In this work we develop a model to reconstruct the CUPID-0 background over the whole energy range of experimental data. We identify the background sources exploiting their distinctive signatures and we assess their extremely low contribution [down to \\[\\sim 10^{-4}\\] counts/(keV kg year)] in the region of interest for \\[^{82}\\hbox {Se}\\] neutrinoless double beta decay search. This result represents a crucial step towards the comprehension of the background in experiments based on scintillating calorimeters and in next generation projects such as CUPID.
Journal Article
The 0ν2β-decay CROSS experiment: preliminary results and prospects
2020
A
bstract
Neutrinoless double-beta decay is a key process in particle physics. Its experimental investigation is the only viable method that can establish the Majorana nature of neutrinos, providing at the same time a sensitive inclusive test of lepton number violation. CROSS (Cryogenic Rare-event Observatory with Surface Sensitivity) aims at developing and testing a new bolometric technology to be applied to future large-scale experiments searching for neutrinoless double-beta decay of the promising nuclei
100
Mo and
130
Te. The limiting factor in large-scale bolometric searches for this rare process is the background induced by surface radioactive contamination, as shown by the results of the CUORE experiment. The basic concept of CROSS consists of rejecting this challenging background component by pulse-shape discrimination, assisted by a proper coating of the faces of the crystal containing the isotope of interest and serving as energy absorber of the bolometric detector. In this paper, we demonstrate that ultra-pure superconductive Al films deposited on the crystal surfaces act successfully as pulse-shape modifiers, both with fast and slow phonon sensors. Rejection factors higher than 99.9% of
α
surface radioactivity have been demonstrated in a series of prototypes based on crystals of Li
2
MoO
4
and TeO
2
. We have also shown that point-like energy depositions can be identified up to a distance of
∼
1 mm from the coated surface. The present program envisions an intermediate experiment to be installed underground in the Canfranc laboratory (Spain) in a CROSS-dedicated facility. This experiment, comprising
∼
3
×
10
25
nuclei of
100
Mo, will be a general test of the CROSS technology as well as a worldwide competitive search for neutrinoless double-beta decay, with sensitivity to the effective Majorana mass down to 70 meV in the most favorable conditions.
Journal Article
First measurement of GaAs as a scintillating calorimeter: achievements and prospects
2025
In this paper we present the first measurement of a Gallium Arsenide (GaAs) crystal as a scintillating calorimeter with dual heat and light readout within the DAREDEVIL project. The experimental setup features a 4.3 g GaAs ( GaAs-1) crystal, operated at approximately 10 mK coupled with a Neutron Transmutation Doped (NTD) thermal sensor for phonon detection and an auxiliary calorimeter for the detection of scintillation light. For the GaAs-1 crystal, a baseline resolution of 121 ± 2 eV has been achieved. While, with a 3.5 g GaAs (GaAs-2) crystal an even better baseline resolution of 44.5 ± 0.8 eV was achieved. Alpha and X-ray calibration sources were used to study the scintillation light response to different types of interacting radiation. The GaAs crystal exhibits a strong particle discrimination capability based on the emitted scintillation light, featuring a light yield (LY) of 0.9 ± 0.2 keV/MeV for
α
induced events and 0.07 ± 0.01 keV/MeV for
β
/
γ
events, both measured at 1 MeV. The unusual luminescence behavior, i.e. more light being produced under irradiation by
α
particles warrants further investigation, particularly due to its potential to enhance sensitivity to low-energy nuclear recoils from light dark matter scattering.
Journal Article
High-Resolution Digitization System for the CROSS Experiment
2020
The signal digitization for CROSS, a bolometric experiment for the search of neutrinoless double beta decay at LSC—Canfranc Underground Laboratory, will be based on a custom solution comprised of an analog-to-digital board interfaced to an Altera Cyclone V FPGA module. Each analog-to-digital board hosts 12 channels that allow data digitization up to 25 ksps per channel and an effective resolution of 21 bits at the typical sample rate required by the experiment (5 ksps). The board also allows to digitally select the cutoff frequency of the anti-aliasing filter with 10 bit resolution from 24 Hz up to 2.5 kHz, as required by fast scintillating bolometers. The FPGA is responsible for the synchronization of the analog-to-digital boards and for the data transfer to the storage, using UDP protocol on a standard Ethernet interface. Each FPGA can manage the data coming from eight boards (96 channels), allowing an excellent scalability. In this contribution, we will present a complete overview of the system and a detailed characterization of the system performance.
Journal Article
First measurement of Gallium Arsenide as a low-temperature calorimeter
2024
In the quest for direct dark matter detection, innovative approaches to lower the detection threshold and explore the sub-GeV mass range, have gained high relevance in the last decade. This study presents the pioneering use of Gallium Arsenide (GaAs) as a low-temperature calorimeter for probing dark matter-electron interactions within the DAREDEVIL (DARk-mattEr DEVIces for Low energy detection) project. Our experimental setup features a GaAs crystal at an ultralow temperature of 15 mK, coupled with a Neutron Transmutation Doped Germanium (NTD-Ge) thermal sensor for precise energy estimation. This configuration is the first step towards detecting single electrons scattered by dark matter particles within the GaAs crystal, to improve the sensitivity to low-mass dark matter candidates significantly. Taking advantage of the production of optical phonons in polar materials such as GaAs gives the possibility to study the scattering of sub-MeV dark matter. This paper presents a detailed analysis of the detector’s response, using a calibration spectrum using
α
particles and X-ray events. While the results do not meet the ambitious eV scale threshold yet, they establish a solid benchmark for assessing the detector’s current performance and sensitivity. This work not only highlights the detector’s potential but also sets the stage for future enhancements aimed at achieving the eV threshold, underscoring the promising direction of this detector technology. These findings demonstrate the feasibility of using GaAs as a cryogenic calorimeter and hence open new avenues for investigating the elusive nature of dark matter through innovative direct detection techniques.
Journal Article
Precise .sup.113Cd Formula omitted decay spectral shape measurement and interpretation in terms of possible Formula omitted quenching
2024
Highly forbidden [Formula omitted] decays provide a sensitive test to nuclear models in a regime in which the decay goes through high spin-multipole states, similar to the neutrinoless double- [Formula omitted] decay process. There are only 3 nuclei (.sup.50V, .sup.113Cd, .sup.115In) which undergo a [Formula omitted] forbidden non-unique [Formula omitted] decay. In this work, we compare the experimental .sup.113Cd spectrum to theoretical spectral shapes in the framework of the spectrum-shape method. We measured with high precision, with the lowest energy threshold and the best energy resolution ever, the [Formula omitted] spectrum of .sup.113Cd embedded in a 0.43 kg [Formula omitted] crystal, operated over 26 days as a bolometer at low temperature in the Canfranc underground laboratory (Spain). We performed a Bayesian fit of the experimental data to three nuclear models (IBFM-2, MQPM and NSM) allowing the reconstruction of the spectral shape as well as the half-life. The fit has two free parameters, one of which is the effective weak axial-vector coupling constant, [Formula omitted], which resulted in [Formula omitted] between 1.0 and 1.2, compatible with a possible quenching. Based on the fit, we measured the half-life of the .sup.113Cd [Formula omitted] decay including systematic uncertainties as [Formula omitted] yr, in agreement with the previous experiments. These results represent a significant step towards a better understanding of low-energy nuclear processes.
Journal Article
Enhanced light signal for the suppression of pile-up events in Mo-based bolometers for the 0Formula omitted decay search
2023
Random coincidences of events could be one of the main sources of background in the search for neutrino-less double-beta decay of [Formula omitted]Mo with macro-bolometers, due to their modest time resolution. Scintillating bolometers as those based on Li [Formula omitted]MoO [Formula omitted] crystals and employed in the CROSS and CUPID experiments can eventually exploit the coincident fast signal detected in a light detector to reduce this background. However, the scintillation provides a modest signal-to-noise ratio, making difficult a pile-up pulse-shape recognition and rejection at timescales shorter than a few ms. Neganov-Trofimov-Luke assisted light detectors (NTL-LDs) offer the possibility to effectively increase the signal-to-noise ratio, preserving a fast time-response, and enhance the capability of pile-up rejection via pulse shape analysis. In this article we present: (a) an experimental work performed with a Li [Formula omitted]MoO [Formula omitted] scintillating bolometer, studied in the framework of the CROSS experiment, and utilizing a NTL-LD; (b) a simulation method to reproduce, synthetically, randomly coincident two-neutrino double-beta decay events; (c) a new analysis method based on a pulse-shape discrimination algorithm capable of providing high pile-up rejection efficiencies. We finally show how the NTL-LDs offer a balanced solution between performance and complexity to reach background index [Formula omitted] [Formula omitted] counts/keV/kg/year with 280 g Li [Formula omitted]MoO [Formula omitted] ( [Formula omitted]Mo enriched) bolometers at 3034 keV, the Q [Formula omitted] of the double-beta decay, and target the goal of a next generation experiment like CUPID.
Journal Article
Enhanced light signal for the suppression of pile-up events in Mo-based bolometers for the 0νββ decay search
by
Ahmine, A.
,
Imbert, L.
,
de Marcillac, P.
in
Algorithms
,
Astronomy
,
Astrophysics and Cosmology
2023
Random coincidences of events could be one of the main sources of background in the search for neutrino-less double-beta decay of
100
Mo with macro-bolometers, due to their modest time resolution. Scintillating bolometers as those based on Li
2
MoO
4
crystals and employed in the CROSS and CUPID experiments can eventually exploit the coincident fast signal detected in a light detector to reduce this background. However, the scintillation provides a modest signal-to-noise ratio, making difficult a pile-up pulse-shape recognition and rejection at timescales shorter than a few ms. Neganov–Trofimov–Luke assisted light detectors (NTL-LDs) offer the possibility to effectively increase the signal-to-noise ratio, preserving a fast time-response, and enhance the capability of pile-up rejection via pulse shape analysis. In this article we present: (a) an experimental work performed with a Li
2
MoO
4
scintillating bolometer, studied in the framework of the CROSS experiment, and utilizing a NTL-LD; (b) a simulation method to reproduce, synthetically, randomly coincident two-neutrino double-beta decay events; (c) a new analysis method based on a pulse-shape discrimination algorithm capable of providing high pile-up rejection efficiencies. We finally show how the NTL-LDs offer a balanced solution between performance and complexity to reach background index
∼
10
-
4
counts/keV/kg/year with 280 g Li
2
MoO
4
(
100
Mo enriched) bolometers at 3034 keV, the Q
β
β
of the double-beta decay, and target the goal of a next generation experiment like CUPID.
Journal Article
Analysis of cryogenic calorimeters with light and heat read-out for double beta decay searches
2018
The suppression of spurious events in the region of interest for neutrinoless double beta decay will play a major role in next generation experiments. The background of detectors based on the technology of cryogenic calorimeters is expected to be dominated by \\[\\alpha \\] particles, that could be disentangled from double beta decay signals by exploiting the difference in the emission of the scintillation light. CUPID-0, an array of enriched Zn\\[^{82}\\]Se scintillating calorimeters, is the first large mass demonstrator of this technology. The detector started data-taking in 2017 at the Laboratori Nazionali del Gran Sasso with the aim of proving that dual read-out of light and heat allows for an efficient suppression of the \\[\\alpha \\] background. In this paper we describe the software tools we developed for the analysis of scintillating calorimeters and we demonstrate that this technology allows to reach an unprecedented background for cryogenic calorimeters.
Journal Article