Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
131 result(s) for "Carpenter, Mark G."
Sort by:
Adaptation of emotional state and standing balance parameters following repeated exposure to height-induced postural threat
Height-induced postural threat influences standing balance control. However, it is unknown if minimizing individuals’ emotional response to threat moderates this relationship. This study repeatedly exposed individuals to height-induced postural threat to determine if reducing the emotional response to threat influences standing balance control. Sixty-eight young adults completed a series of standing trials at LOW (0.8 m above ground, away from edge) and HIGH (3.2 m above ground, at edge) postural threat conditions. Emotional state was assessed using self-report and electrodermal measures. Standing balance was assessed through analysis of centre of pressure (COP) movement and lower leg electromyographic activity. Individuals’ emotional response to threat was attenuated following repeated threat exposure. However, threat-induced changes in standing balance were largely preserved. When initially threatened, individuals leaned backward and demonstrated smaller amplitude and higher frequency of COP adjustments; these balance outcomes did not change following repeated threat exposure. Only high frequency COP oscillations (>1.8 Hz) and ankle muscle co-contraction showed any adaptation; regression analyses showed that these behavioural adaptations were accounted for by a combination of emotional and cognitive state changes. This suggests that some threat-induced standing balance changes are more closely linked with the emotional response to threat than others, and are therefore amendable to intervention.
Slow dynamics of human balance control
When standing on a tilting surface, humans’ sway behavior at frequencies below 0.1 Hz indicates the contribution of a slow feedback component. We suggest this may reflect a self-calibration mechanism of the balance control system, constantly referencing orientation estimates based on kinematic sensory cues to a reference based on force cues. However, attempts to identify this mechanism have been limited by insufficient experimental trial durations and small sample sizes. This study aimed to assess the properties of the mechanism that reduces body sway at very low frequencies in upright standing. Anteroposterior body sway responses to short- and long-duration surface tilts were measured and interpreted using balance control models. Four feedback control model variants, with different mechanisms to account for the slow dynamics, were fit to experimental data. Furthermore, we tested how estimates of the slow component are affected by stimulus period duration. We hypothesized that the model variants containing force cues would provide the best fit to experimental sway responses, particularly in response to long-duration surface tilts. Our results confirm this hypothesis and suggest that humans use integrated force afferents from the feet and legs in a slow, positive feedback mechanism during standing to remain upright. Despite stimulus period durations of ~ 180 s, some properties of this mechanism were difficult to estimate. The positive torque feedback mechanism aligns with the notion of self-calibration.
Estimation of the visual contribution to standing balance using virtual reality
Sensory perturbations are a valuable tool to assess sensory integration mechanisms underlying balance. Implemented as systems-identification approaches, they can be used to quantitatively assess balance deficits and separate underlying causes. However, the experiments require controlled perturbations and sophisticated modeling and optimization techniques. Here we propose and validate a virtual reality implementation of moving visual scene experiments together with model-based interpretations of the results. The approach simplifies the experimental implementation and offers a platform to implement standardized analysis routines. Sway of 14 healthy young subjects wearing a virtual reality head-mounted display was measured. Subjects viewed a virtual room or a screen inside the room, which were both moved during a series of sinusoidal or pseudo-random room or screen tilt sequences recorded on two days. In a between-subject comparison of 10 × 6 min long pseudo-random sequences, each applied at 5 amplitudes, our results showed no difference to a real-world moving screen experiment from the literature. We used the independent-channel model to interpret our data, which provides a direct estimate of the visual contribution to balance, together with parameters characterizing the dynamics of the feedback system. Reliability estimates of single subject parameters from six repetitions of a 6 × 20-s pseudo-random sequence showed poor test–retest agreement. Estimated parameters show excellent reliability when averaging across three repetitions within each day and comparing across days (Intra-class correlation; ICC 0.7–0.9 for visual weight, time delay and feedback gain). Sway responses strongly depended on the visual scene, where the high-contrast, abstract screen evoked larger sway as compared to the photo-realistic room. In conclusion, our proposed virtual reality approach allows researchers to reliably assess balance control dynamics including the visual contribution to balance with minimal implementation effort.
Estimating whole-body centre of mass sway during quiet standing with inertial measurement units
Our ability to balance upright provides a stable platform to perform daily activities. Balance deficits associated with various clinical conditions may affect activities of daily living, highlighting the importance of quantifying standing balance in ecological environments. Although typically performed in laboratory settings, the growing availability of low-cost inertial measurement units (IMUs) allows the assessment of balance in the real world. However, it is unclear how many IMUs are required to adequately estimate linear displacements of the centre of mass (CoM) at stance widths associated with daily activities. While wearing IMUs on their head, sternum, back, right thigh, right shank, and left shank, 16 participants stood quietly on a force platform in narrow, hip-width, and shoulder-width stances, each for three two-minute trials. Using a multi-segment biomechanical model, we estimated CoM displacements from all possible combinations of the IMUs. We then calculated the correlation between the IMU- and force platform- CoM estimates to determine the minimal number of IMUs needed to estimate CoM sway. Four IMUs were necessary to accurately estimate anteroposterior (AP) and mediolateral (ML) CoM displacements across stance widths. Using IMUs on the back, right thigh, and both shanks, we found strong correlations between the IMU CoM estimation and the force platform CoM estimation in narrow stance (AP: r = 0.92±0.04, RMSE = 2.39±2.08 mm; ML: r = 0.97±0.02, RMSE = 1.16±0.77 mm), hip-width stance (AP: r = 0.93±0.04, RMSE = 2.00±1.18 mm; ML: r = 0.92±0.06, RMSE = 0.92±0.70 mm), and shoulder-width stance (AP: r = 0.93±0.03, RMSE = 1.95±1.66 mm; ML: r = 0.86±0.13, RMSE = 1.39±1.46 mm). These results indicate that IMUs can be used to estimate CoM displacements during quiet standing and that four IMUs are necessary to do so. Using an algorithm based on a simple biomechanical model, researchers and clinicians can estimate whole-body CoM displacements accurately during unperturbed quiet standing. This approach can improve the ecological validity of standing balance research and opens the possibility for assessing/monitoring patients with standing balance deficits.
Selective preservation of changes to standing balance control despite psychological and autonomic habituation to a postural threat
Humans exhibit changes in postural control when confronted with threats to stability. This study used a prolonged threat exposure protocol to manipulate emotional state within a threatening context to determine if any threat-induced standing behaviours are employed independent of emotional state. Retention of balance adaptations was also explored. Thirty-seven adults completed a series of 90-s standing trials at two surface heights (LOW: 0.8 m above ground, away from edge; HIGH: 3.2 m above ground, at edge) on two visits 2–4 weeks apart. Psychological and autonomic state was assessed using self-report and electrodermal measures. Balance control was assessed using centre of pressure (COP) and lower limb electromyographic recordings. Upon initial threat exposure, individuals leaned backward, reduced low-frequency centre of pressure (COP) power, and increased high-frequency COP power and plantar/dorsiflexor coactivation. Following repeated exposure, the psychological and autonomic response to threat was substantially reduced, yet only high-frequency COP power and plantar/dorsiflexor coactivation habituated. Upon re-exposure after 2–4 weeks, there was partial recovery of the emotional response to threat and few standing balance adaptations were retained. This study suggests that some threat-induced standing behaviours are coupled with the psychological and autonomic state changes induced by threat, while others may reflect context-appropriate adaptations resistant to habituation.
Effects of postural threat on the scaling of anticipatory postural adjustments in young and older adults
Introduction: The ability to scale anticipatory postural adjustments (APAs) according to the predicted size of the upcoming movement is reduced with aging. While age-related changes in central set may be one reason for this effect, an individual's emotional state might also contribute to changes in anticipatory postural control. Therefore, the purpose of this study was to determine whether an altered emotional state, as elicited through postural threat, alters the scaling of APAs during a handle pull movement in young and older adults. It was hypothesized that the presence of postural threat would lead to more homogenous APAs (i.e., less scaling of APAs) across a range of pulling forces.Methods: Young (n=23) and older adults (n=16) stood on top of a force plate that was mounted to a motorized platform. From this position, participants performed a series of handle pull trials without (no threat) or with (threat) the possibility of receiving a postural perturbation in the form of an unpredictable surface translation. Handle pulls were performed at force levels between 50% and 90% of maximum force. For each trial, the magnitude and timing of the APA were quantified from center of pressure (COP) recordings as well as electromyographic (EMG) activity of the soleus and medial gastrocnemius. The scaling of APAs with respect to force exertion was then determined through regression analyses and by comparing APAs during pulls of lower versus higher force.Results and Discussion: As evidenced by their smaller slope of the regression line between various dependent measures (i.e., COP velocity, soleus EMG onset latency, and soleus EMG amplitude) and the pulled forces, older adults demonstrated less scaling of APAs than the young. However, increases in arousal, anxiety and fear of falling due to postural threat, only minimally altered the scaling of APAs. Regardless of age, the slope of the regressions for none of the measures were affected by threat while only the soleus and medial gastrocnemius EMG onsets demonstrated significant force x threat interaction effects. These results suggest that the decreased ability to scale APAs with aging is unlikely to be due to changes in emotional state.
Overground walking with a robotic exoskeleton elicits trunk muscle activity in people with high-thoracic motor-complete spinal cord injury
Background The trunk muscles are critical for postural control. Recent neurophysiological studies have revealed sparing of trunk muscle function in individuals with spinal cord injury (SCI) classified with thoracic or cervical motor-complete injuries. These findings raise the possibility for recruiting and retraining this spared trunk function through rehabilitation. Robotic gait training devices may provide a means to promote trunk muscle activation. Thus, the objective of this study was to characterize and compare the activation of the trunk muscles during walking with two robotic gait training devices (Ekso and Lokomat) in people with high thoracic motor-complete SCI. Methods Participants with chronic motor-complete paraplegia performed 3 speed-matched walking conditions: Lokomat-assisted walking, Ekso-assisted walking overground, and Ekso-assisted walking on a treadmill. Surface electromyography (EMG) signals were recorded bilaterally from the rectus abdominis (RA), external oblique (EO), and erector spinae (ES) muscles. Results Greater recruitment of trunk muscle EMG was elicited with Ekso-assisted walking compared to the Lokomat. Similar levels of trunk EMG activation were observed between Ekso overground and Ekso on the treadmill, indicating that differences between Ekso and Lokomat could not be attributed to the use of a hand-held gait aid. The level of trunk EMG activation during Lokomat walking was not different than that recorded during quiescent supine lying. Conclusions Ekso-assisted walking elicits greater activation of trunk muscles compared to Lokomat-assisted walking, even after controlling for the use of hand-held assistive devices. The requirement of the Ekso for lateral weight-shifting in order to activate each step could lead to better postural muscle activation.
Effects of postural threat on perceptions of lower leg somatosensory stimuli during standing
Height-induced postural threat affects emotional state and standing balance behaviour during static, voluntary, and dynamic tasks. Facing a threat to balance also affects sensory and cortical processes during balance tasks. As sensory and cognitive functions are crucial in forming perceptions of movement, balance-related changes during threatening conditions might be associated with changes in conscious perceptions. Therefore, the purpose of this study was to examine the changes and potential mechanisms underlying conscious perceptions of balance-relevant information during height-induced postural threat. A combination of three experimental procedures utilized height-induced postural threat to manipulate emotional state, balance behavior, and/or conscious perceptions of balance-related stimuli. Experiment 1 assessed conscious perception of foot position during stance. During continuous antero-posterior pseudorandom support surface rotations, perceived foot movement was larger while actual foot movement did not change in the High (3.2 m, at the edge) compared to Low (1.1 m, away from edge) height conditions. Experiment 2 and 3 assessed somatosensory perceptual thresholds during upright stance. Perceptual thresholds for ankle rotations were elevated while foot sole vibrations thresholds remained unchanged in the High compared to Low condition. This study furthers our understanding of the relationship between emotional state, sensory perception, and balance performance. While threat can influence the perceived amplitude of above threshold ankle rotations, there is a reduction in the sensitivity of an ankle rotation without any change to foot sole sensitivity. These results highlight the effect of postural threat on neurophysiological and cognitive components of balance control and provide insight into balance assessment and intervention.
The Effect of Roll Circular Vection on Roll Tilt Postural Responses and Roll Subjective Postural Horizontal of Healthy Normal Subjects
Background: Falls and related injuries are critical issues in several disease states, as well as aging, especially when interactions between vestibular and visual sensory inputs are involved. Slow support surface tilt (0.6 deg/s) followed by subjective postural horizontal (SPH) assessments have been proposed as a viable method for assessing otolith contributions to balance control. Previous assessments of perceived body alignment to vertical, including subjective visual vertical, have suggested that visual inputs are weighted more when vestibular information is near the threshold and less reliable during slow body tilt. To date, no studies have examined the influence of visual stimuli on slow roll-tilt postural responses and the SPH. Therefore, this study investigated how dynamic visual cues, in the form of circular vection (CV), influence postural responses and the perception of the horizontal during and after support surface tilt. Methods: Ten healthy young adults (6 female, mean age 23) wore a head-mounted display while standing on a tilting platform. Participants were asked to remain upright for 30 s, during which (1) the visual scene rotated, inducing roll CV clockwise (CW) or counter-clockwise (CCW) at 60°/s; (2) the platform only (PO) rotated in roll to test SPH (0.6°/s, 2°, CW or CCW); (3) a combination of both; or (4) neither occurred. During SPH trials, participants used a hand-held device to reset the position of the platform to 0.8°/s to their perceived SPH. The angular motion of body segments was measured using pairs of light-emitting diodes mounted on the head, trunk and pelvis. Segment motion, prior to platform motion, was compared to that at peak body motion induced by platform motion and when SPH had been set. Results: When the support surface was tilted 2°, peak upper body tilt significantly increased for congruent CV and platform tilt and decreased at the pelvis for incongruent CV when compared to PO, leading to significant differences across body segments for congruent and incongruent conditions (p ≤ 0.008). During PO, participants’ mean SPH deviated from horizontal by 0.2°. The pelvis deviated 0.2°, the trunk 0.3°, and the head 0.5° in the direction of initial platform rotation. When platform tilt and CV directions were congruent or incongruent, only head tilt at SPH reset under congruent conditions was significantly different from the PO condition (1.7° vs. 0.5°). Conclusions: Roll CV has a significant effect on phasic body responses and a less significant effect on tonic body responses to lateral tilt. The SPH of the support surface was not altered by CV. Responses during tilt demonstrated enhanced reactions for congruent and reduced reactions for incongruent CV, both different from responses to CV alone. Tonic body displacements associated with SPH were changed less than those during tilt and were only slightly larger than displacements for CV alone. This study supports the hypothesis of weighted multisensory integration during dynamic postural tasks being highly dependent on the direction of visual cues during tilt and less dependent on tonic SPH offsets. These techniques could be used to examine vestibular and visual interactions within clinical populations, particularly those with visual vertigo and dizziness.
Lower‐limb muscle responses evoked with noisy vibrotactile foot sole stimulation
Aim Cutaneous feedback from the foot sole contributes to the control of standing balance in two ways: it provides perceptual awareness of tactile perturbations at the interface with the ground (e.g., shifts in the pressure distribution, slips, etc.) and it reflexively activates lower‐motor neurons to trigger stabilizing postural responses. Here we focus on the latter, cutaneous (or cutaneomotor) reflex coupling in the lower limb. These reflexes have been studied most‐frequently with electrical pulse trains that bypass natural cutaneous mechanotransduction, stimulating cutaneous afferents in a largely non‐physiological manner. Harnessing the mechanical filtering properties of cutaneous afferents, we take a novel mechanical approach by applying supra‐threshold continuous noisy vibrotactile stimulation (NVS) to the medial forefoot. Methods Using NVS, we characterized the time and frequency domain properties of cutaneomotor reflexes in the Tibialis Anterior. We additionally measured stimulus‐triggered average muscle responses to repeated discrete sinusoidal pulses for comparison. To investigate cutaneomotor reflex gain scaling, stimuli were delivered at 3‐ or 10‐times perceptual threshold (PT), while participants held 12.5% or 25% of maximum voluntary contraction (MVC). Results Peak responses in the time domain were observed at lags reflecting transmission delay through a polysynaptic reflex pathway (~90–100 ms). Increasing the stimulus amplitude enhanced cutaneomotor coupling, likely by increasing afferent firing rates. Although greater background muscle contraction increased the overall amplitude of the evoked responses, it did not increase the proportion of the muscle response attributable to cutaneous input. Conclusion Taken together, our findings support the use of NVS as a novel tool for probing the physiological properties of cutaneomotor reflex pathways. Here we describe a novel approach for measuring cutaneous reflex function using noisy vibrotactile stimulation (NVS) of the skin. We examine the effects of changing the stimulus amplitude and background contraction level on the evoked responses. Taken together, our findings support the use of NVS as a powerful new tool for probing the physiological properties of cutaneomotor reflex pathways.