Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
79 result(s) for "Carr, Anitra"
Sort by:
Vitamin C and Immune Function
Vitamin C is an essential micronutrient for humans, with pleiotropic functions related to its ability to donate electrons. It is a potent antioxidant and a cofactor for a family of biosynthetic and gene regulatory enzymes. Vitamin C contributes to immune defense by supporting various cellular functions of both the innate and adaptive immune system. Vitamin C supports epithelial barrier function against pathogens and promotes the oxidant scavenging activity of the skin, thereby potentially protecting against environmental oxidative stress. Vitamin C accumulates in phagocytic cells, such as neutrophils, and can enhance chemotaxis, phagocytosis, generation of reactive oxygen species, and ultimately microbial killing. It is also needed for apoptosis and clearance of the spent neutrophils from sites of infection by macrophages, thereby decreasing necrosis/NETosis and potential tissue damage. The role of vitamin C in lymphocytes is less clear, but it has been shown to enhance differentiation and proliferation of B- and T-cells, likely due to its gene regulating effects. Vitamin C deficiency results in impaired immunity and higher susceptibility to infections. In turn, infections significantly impact on vitamin C levels due to enhanced inflammation and metabolic requirements. Furthermore, supplementation with vitamin C appears to be able to both prevent and treat respiratory and systemic infections. Prophylactic prevention of infection requires dietary vitamin C intakes that provide at least adequate, if not saturating plasma levels (i.e., 100–200 mg/day), which optimize cell and tissue levels. In contrast, treatment of established infections requires significantly higher (gram) doses of the vitamin to compensate for the increased inflammatory response and metabolic demand.
A new clinical trial to test high-dose vitamin C in patients with COVID-19
An earlier IV vitamin C trial of patients admitted to the ICU with pneumonia included hydrocortisone administration [4], however, systemic corticosteroid treatment has not been shown to have significant benefits in patients with COVID-19 [5]. Fowler AA 3rd, Truwit JD, Hite RD, Morris PE, DeWilde C, Priday A, Fisher B, Thacker LR 2nd, Natarajan R, Brophy DF, Sculthorpe R, Nanchal R, Syed A, Sturgill J, Martin GS, Sevransky J, Kashiouris M, Hamman S, Egan KF, Hastings A, Spencer W, Tench S, Mehkri O, Bindas J, Duggal A, Graf J, Zellner S, Yanny L, McPolin C, Hollrith T, Kramer D, Ojielo C, Damm T, Cassity E, Wieliczko A, Halquist M. Effect of vitamin C infusion on organ failure and biomarkers of inflammation and vascular injury in patients with sepsis and severe acute respiratory failure: the CITRIS-ALI randomized clinical trial. Kim WY, Jo EJ, Eom JS, Mok J, Kim MH, Kim KU, Park HK, Lee MK, Lee K. Combined vitamin C, hydrocortisone, and thiamine therapy for patients with severe pneumonia who were admitted to the intensive care unit: propensity score-based analysis of a before-after cohort study.
Optimal Nutritional Status for a Well-Functioning Immune System Is an Important Factor to Protect against Viral Infections
Public health practices including handwashing and vaccinations help reduce the spread and impact of infections. Nevertheless, the global burden of infection is high, and additional measures are necessary. Acute respiratory tract infections, for example, were responsible for approximately 2.38 million deaths worldwide in 2016. The role nutrition plays in supporting the immune system is well-established. A wealth of mechanistic and clinical data show that vitamins, including vitamins A, B6, B12, C, D, E, and folate; trace elements, including zinc, iron, selenium, magnesium, and copper; and the omega-3 fatty acids eicosapentaenoic acid and docosahexaenoic acid play important and complementary roles in supporting the immune system. Inadequate intake and status of these nutrients are widespread, leading to a decrease in resistance to infections and as a consequence an increase in disease burden. Against this background the following conclusions are made: (1) supplementation with the above micronutrients and omega-3 fatty acids is a safe, effective, and low-cost strategy to help support optimal immune function; (2) supplementation above the Recommended Dietary Allowance (RDA), but within recommended upper safety limits, for specific nutrients such as vitamins C and D is warranted; and (3) public health officials are encouraged to include nutritional strategies in their recommendations to improve public health.
The Roles of Vitamin C in Skin Health
The primary function of the skin is to act as a barrier against insults from the environment, and its unique structure reflects this. The skin is composed of two layers: the epidermal outer layer is highly cellular and provides the barrier function, and the inner dermal layer ensures strength and elasticity and gives nutritional support to the epidermis. Normal skin contains high concentrations of vitamin C, which supports important and well-known functions, stimulating collagen synthesis and assisting in antioxidant protection against UV-induced photodamage. This knowledge is often used as a rationale for the addition of vitamin C to topical applications, but the efficacy of such treatment, as opposed to optimising dietary vitamin C intake, is poorly understood. This review discusses the potential roles for vitamin C in skin health and summarises the in vitro and in vivo research to date. We compare the efficacy of nutritional intake of vitamin C versus topical application, identify the areas where lack of evidence limits our understanding of the potential benefits of vitamin C on skin health, and suggest which skin properties are most likely to benefit from improved nutritional vitamin C intake.
Global Vitamin C Status and Prevalence of Deficiency: A Cause for Concern?
Vitamin C is an essential nutrient that must be obtained through the diet in adequate amounts to prevent hypovitaminosis C, deficiency and its consequences—including the potentially fatal deficiency disease scurvy. Global vitamin C status and prevalence of deficiency has not previously been reported, despite vitamin C’s pleiotropic roles in both non-communicable and communicable disease. This review highlights the global literature on vitamin C status and the prevalence of hypovitaminosis C and deficiency. Related dietary intake is reported if assessed in the studies. Overall, the review illustrates the shortage of high quality epidemiological studies of vitamin C status in many countries, particularly low- and middle-income countries. The available evidence indicates that vitamin C hypovitaminosis and deficiency is common in low- and middle-income countries and not uncommon in high income settings. Further epidemiological studies are required to confirm these findings, to fully assess the extent of global vitamin C insufficiency, and to understand associations with a range of disease processes. Our findings suggest a need for interventions to prevent deficiency in a range of at risk groups and regions of the world.
Factors Affecting Vitamin C Status and Prevalence of Deficiency: A Global Health Perspective
A recent review of global vitamin C status has indicated a high prevalence of deficiency, particularly in low- and middle-income countries, as well as in specific subgroups within high-income countries. Here, we provide a narrative review of potential factors influencing vitamin C status globally. The in vivo status of vitamin C is primarily affected by dietary intake and supplement use, with those who supplement having a higher mean status and a lower prevalence of deficiency. Dietary intake can be influenced by cultural aspects such as traditional cooking practices and staple foods, with many staple foods, such as grains, contributing negligible vitamin C to the diet. Environmental factors can also affect vitamin C intake and status; these include geographic region, season, and climate, as well as pollution, the latter partly due to enhanced oxidative stress. Demographic factors such as sex, age, and race are known to affect vitamin C status, as do socioeconomic factors such as deprivation, education and social class, and institutionalization. Various health aspects can affect vitamin C status; these include body weight, pregnancy and lactation, genetic variants, smoking, and disease states, including severe infections as well as various noncommunicable diseases such as cardiovascular disease and cancer. Some of these factors have changed over time; therefore, we also explore if vitamin C status has shown temporal changes. Overall, there are numerous factors that can affect vitamin C status to different extents in various regions of the world. Many of these factors are not taken into consideration during the setting of global dietary intake recommendations for vitamin C.
The Emerging Role of Vitamin C in the Prevention and Treatment of COVID-19
Investigation into the role of vitamin C in the prevention and treatment of pneumonia and sepsis has been underway for many decades. This research has laid a strong foundation for translation of these findings into patients with severe coronavirus disease (COVID-19). Research has indicated that patients with pneumonia and sepsis have low vitamin C status and elevated oxidative stress. Administration of vitamin C to patients with pneumonia can decrease the severity and duration of the disease. Critically ill patients with sepsis require intravenous administration of gram amounts of the vitamin to normalize plasma levels, an intervention that some studies suggest reduces mortality. The vitamin has pleiotropic physiological functions, many of which are relevant to COVID-19. These include its antioxidant, anti-inflammatory, antithrombotic and immuno-modulatory functions. Preliminary observational studies indicate low vitamin C status in critically ill patients with COVID-19. There are currently a number of randomized controlled trials (RCTs) registered globally that are assessing intravenous vitamin C monotherapy in patients with COVID-19. Since hypovitaminosis C and deficiency are common in low–middle-income settings, and many of the risk factors for vitamin C deficiency overlap with COVID-19 risk factors, it is possible that trials carried out in populations with chronic hypovitaminosis C may show greater efficacy. This is particularly relevant for the global research effort since COVID-19 is disproportionately affecting low–middle-income countries and low-income groups globally. One small trial from China has finished early and the findings are currently under peer review. There was significantly decreased mortality in the more severely ill patients who received vitamin C intervention. The upcoming findings from the larger RCTs currently underway will provide more definitive evidence. Optimization of the intervention protocols in future trials, e.g., earlier and sustained administration, is warranted to potentially improve its efficacy. Due to the excellent safety profile, low cost, and potential for rapid upscaling of production, administration of vitamin C to patients with hypovitaminosis C and severe respiratory infections, e.g., COVID-19, appears warranted.
The role of vitamin C in the treatment of pain: new insights
The vitamin C deficiency disease scurvy is characterised by musculoskeletal pain and recent epidemiological evidence has indicated an association between suboptimal vitamin C status and spinal pain. Furthermore, accumulating evidence indicates that vitamin C administration can exhibit analgesic properties in some clinical conditions. The prevalence of hypovitaminosis C and vitamin C deficiency is high in various patient groups, such as surgical/trauma, infectious diseases and cancer patients. A number of recent clinical studies have shown that vitamin C administration to patients with chronic regional pain syndrome decreases their symptoms. Acute herpetic and post-herpetic neuralgia is also diminished with high dose vitamin C administration. Furthermore, cancer-related pain is decreased with high dose vitamin C, contributing to enhanced patient quality of life. A number of mechanisms have been proposed for vitamin C’s analgesic properties. Herein we propose a novel analgesic mechanism for vitamin C; as a cofactor for the biosynthesis of amidated opioid peptides. It is well established that vitamin C participates in the amidation of peptides, through acting as a cofactor for peptidyl-glycine α-amidating monooxygenase, the only enzyme known to amidate the carboxy terminal residue of neuropeptides and peptide hormones. Support for our proposed mechanism comes from studies which show a decreased requirement for opioid analgesics in surgical and cancer patients administered high dose vitamin C. Overall, vitamin C appears to be a safe and effective adjunctive therapy for acute and chronic pain relief in specific patient groups.
Hypovitaminosis C and vitamin C deficiency in critically ill patients despite recommended enteral and parenteral intakes
Background Vitamin C is an essential water-soluble nutrient which cannot be synthesised or stored by humans. It is a potent antioxidant with anti-inflammatory and immune-supportive roles. Previous research has indicated that vitamin C levels are depleted in critically ill patients. In this study we have assessed plasma vitamin C concentrations in critically ill patients relative to infection status (septic shock or non-septic) and level of inflammation (C-reactive protein concentrations). Vitamin C status was also assessed relative to daily enteral and parenteral intakes to determine if standard intensive care unit (ICU) nutritional support is adequate to meet the vitamin C needs of critically ill patients. Methods Forty-four critically ill patients (24 with septic shock, 17 non-septic, 3 uncategorised) were recruited from the Christchurch Hospital Intensive Care Unit. We measured concentrations of plasma vitamin C and a pro-inflammatory biomarker (C-reactive protein) daily over 4 days and calculated patients’ daily vitamin C intake from the enteral or total parenteral nutrition they received. We compared plasma vitamin C and C-reactive protein concentrations between septic shock and non-septic patients over 4 days using a mixed effects statistical model, and we compared the vitamin C status of the critically ill patients with known vitamin C bioavailability data using a four-parameter log-logistic response model. Results Overall, the critically ill patients exhibited hypovitaminosis C (i.e., < 23 μmol/L), with a mean plasma vitamin C concentration of 17.8 ± 8.7 μmol/L; of these, one-third had vitamin C deficiency (i.e., < 11 μmol/L). Patients with hypovitaminosis C had elevated inflammation (C-reactive protein levels; P  < 0.05). The patients with septic shock had lower vitamin C concentrations and higher C-reactive protein concentrations than the non-septic patients ( P  < 0.05). Nearly 40% of the septic shock patients were deficient in vitamin C, compared with 25% of the non-septic patients. These low vitamin C levels were apparent despite receiving recommended intakes via enteral and/or parenteral nutritional therapy (mean 125 mg/d). Conclusions Critically ill patients have low vitamin C concentrations despite receiving standard ICU nutrition. Septic shock patients have significantly depleted vitamin C levels compared with non-septic patients, likely resulting from increased metabolism due to the enhanced inflammatory response observed in septic shock.
Factors Affecting the Vitamin C Dose-Concentration Relationship: Implications for Global Vitamin C Dietary Recommendations
Vitamin C status is known to be associated with several demographic and lifestyle factors. These include gender, age, ethnicity, pregnancy/lactation, body weight, smoking status and dietary habits. In the present study, our aim was to investigate the National Health and Nutrition Examination Survey (NHANES) 2017–2018 datasets to assess the impact of these factors on vitamin C dose-concentration relationships to establish if there are higher requirements for vitamin C in certain subpopulations, and the possible extent of these additional requirements. The final cohort comprised 2828 non-supplementing adult males and females (aged 18–80+ years) with both vitamin C serum concentrations and dietary intake data available. The data were subsequently stratified by gender, age tertiles (≤36, 37–58, ≥59 years), ethnicity (non-Hispanic white, non-Hispanic black, and total Hispanic), socioeconomic tertiles (poverty income ratios: ≤1.35, 1.36–3.0, >3.0), weight tertiles (<72, 72–91, >91 kg), BMI tertiles (<26, 26–32, >32 kg/m2) and smoking status. Sigmoidal (four parameter logistic) curves with asymmetrical 95% confidence intervals were fitted to the dose-concentration data. We found that males required vitamin C intakes ~1.2-fold higher than females to reach ‘adequate’ serum vitamin C concentrations of 50 µmol/L. Males had both higher body weight and a higher prevalence of smoking than females. Smokers required vitamin C intakes ~2.0-fold higher than non-smokers to reach adequate vitamin C concentrations. Relative to adults in the lighter weight tertile, adults in the heavier weight tertile required ~2.0-fold higher dietary intakes of vitamin C to reach adequate serum concentrations. We did not observe any impact of ethnicity or socioeconomic status on the vitamin C dose-concentration relationship, and although no significant difference between younger and older adults was observed at vitamin C intakes > 75 mg/day, at intakes < 75 mg/day, older adults had an attenuated serum response to vitamin C intake. In conclusion, certain demographic and lifestyle factors, specifically gender, smoking and body weight, have a significant impact on vitamin C requirements. Overall, the data indicate that the general population should consume ~110 mg/day of vitamin C to attain adequate serum concentrations, smokers require ~165 mg/day relative to non-smokers, and heavier people (100+ kg) require ~155 mg/day to reach comparable vitamin C concentrations. These findings have important implications for global vitamin C dietary recommendations.