Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
81 result(s) for "Carroll, Darin"
Sort by:
Characterization of Monkeypox virus infection in African rope squirrels (Funisciurus sp.)
Monkeypox (MPX) is a zoonotic disease endemic in Central and West Africa and is caused by Monkeypox virus (MPXV), the most virulent Orthopoxvirus affecting humans since the eradication of Variola virus (VARV). Many aspects of the MPXV transmission cycle, including the natural host of the virus, remain unknown. African rope squirrels (Funisciurus spp.) are considered potential reservoirs of MPXV, as serosurveillance data in Central Africa has confirmed the circulation of the virus in these rodent species [1,2]. In order to understand the tissue tropism and clinical signs associated with infection with MPXV in these species, wild-caught rope squirrels were experimentally infected via intranasal and intradermal exposure with a recombinant MPXV strain from Central Africa engineered to express the luciferase gene. After infection, we monitored viral replication and shedding via in vivo bioluminescent imaging, viral culture and real time PCR. MPXV infection in African rope squirrels caused mortality and moderate to severe morbidity, with clinical signs including pox lesions in the skin, eyes, mouth and nose, dyspnea, and profuse nasal discharge. Both intranasal and intradermal exposures induced high levels of viremia, fast systemic spread, and long periods of viral shedding. Shedding and luminescence peaked at day 6 post infection and was still detectable after 15 days. Interestingly, one sentinel animal, housed in the same room but in a separate cage, also developed severe MPX disease and was euthanized. This study indicates that MPXV causes significant pathology in African rope squirrels and infected rope squirrels shed large quantities of virus, supporting their role as a potential source of MPXV transmission to humans and other animals in endemic MPX regions.
Pharmacokinetics and Efficacy of a Potential Smallpox Therapeutic, Brincidofovir, in a Lethal Monkeypox Virus Animal Model
Preparedness activities against highly transmissible viruses with high mortality rates have been highlighted during the ongoing coronavirus disease 2019 (COVID-19) pandemic. Smallpox, caused by variola virus (VARV) infection, is highly transmissible, with an estimated 30% mortality. Smallpox, caused by Variola virus (VARV), was eradicated in 1980; however, VARV bioterrorist threats still exist, necessitating readily available therapeutics. Current preparedness activities recognize the importance of oral antivirals and recommend therapeutics with different mechanisms of action. Monkeypox virus (MPXV) is closely related to VARV, causing a highly similar clinical human disease, and can be used as a surrogate for smallpox antiviral testing. The prairie dog MPXV model has been characterized and used to study the efficacy of antipoxvirus therapeutics, including recently approved TPOXX (tecovirimat). Brincidofovir (BCV; CMX001) has shown antiviral activity against double-stranded DNA viruses, including poxviruses. To determine the exposure of BCV following oral administration to prairie dogs, a pharmacokinetics (PK) study was performed. Analysis of BCV plasma concentrations indicated variability, conceivably due to the outbred nature of the animals. To determine BCV efficacy in the MPXV prairie dog model, groups of animals were intranasally challenged with 9 × 10 5 plaque-forming units (PFU; 90% lethal dose [LD 90 ]) of MPXV on inoculation day 0 (ID0). Animals were divided into groups based on the first day of BCV treatment relative to inoculation day (ID–1, ID0, or ID1). A trend in efficacy was noted dependent upon treatment initiation (57% on ID–1, 43% on ID0, and 29% on ID1) but was lower than demonstrated in other animal models. Analysis of the PK data indicated that BCV plasma exposure (maximum concentration [ C max ]) and the time of the last quantifiable concentration (AUC last ) were lower than in other animal models administered the same doses, indicating that suboptimal BCV exposure may explain the lower protective effect on survival. IMPORTANCE Preparedness activities against highly transmissible viruses with high mortality rates have been highlighted during the ongoing coronavirus disease 2019 (COVID-19) pandemic. Smallpox, caused by variola virus (VARV) infection, is highly transmissible, with an estimated 30% mortality. Through an intensive vaccination campaign, smallpox was declared eradicated in 1980, and routine smallpox vaccination of individuals ceased. Today's current population has little/no immunity against VARV. If smallpox were to reemerge, the worldwide results would be devastating. Recent FDA approval of one smallpox antiviral (tecovirimat) was a successful step in biothreat preparedness; however, orthopoxviruses can become resistant to treatment, suggesting the need for multiple therapeutics. Our paper details the efficacy of the investigational smallpox drug brincidofovir in a monkeypox virus (MPXV) animal model. Since brincidofovir has not been tested in vivo against smallpox, studies with the related virus MPXV are critical in understanding whether it would be protective in the event of a smallpox outbreak.
A Phylogeographic Investigation of African Monkeypox
Monkeypox is a zoonotic disease caused by a virus member of the genus Orthopoxvirus and is endemic to Central and Western African countries. Previous work has identified two geographically disjuct clades of monkeypox virus based on the analysis of a few genomes coupled with epidemiological and clinical analyses; however, environmental and geographic causes of this differentiation have not been explored. Here, we expand previous phylogenetic studies by analyzing a larger set of monkeypox virus genomes originating throughout Sub-Saharan Africa to identify possible biogeographic barriers associated with genetic differentiation; and projected ecological niche models onto environmental conditions at three periods in the past to explore the potential role of climate oscillations in the evolution of the two primary clades. Analyses supported the separation of the Congo Basin and West Africa clades; the Congo Basin clade shows much shorter branches, which likely indicate a more recent diversification of isolates within this clade. The area between the Sanaga and Cross Rivers divides the two clades and the Dahomey Gap seems to have also served as a barrier within the West African clade. Contraction of areas with suitable environments for monkeypox virus during the Last Glacial Maximum, suggests that the Congo Basin clade of monkeypox virus experienced a severe bottleneck and has since expanded its geographic range.
Analysis of the initial lot of the CDC 2019-Novel Coronavirus (2019-nCoV) real-time RT-PCR diagnostic panel
At the start of the COVID-19 pandemic, the Centers for Disease Control and Prevention (CDC) designed, manufactured, and distributed the CDC 2019-Novel Coronavirus (2019-nCoV) Real-Time RT-PCR Diagnostic Panel for SARS-CoV-2 detection. The diagnostic panel targeted three viral nucleocapsid gene loci (N1, N2, and N3 primers and probes) to maximize sensitivity and to provide redundancy for virus detection if mutations occurred. After the first distribution of the diagnostic panel, state public health laboratories reported fluorescent signal in the absence of viral template (false-positive reactivity) for the N3 component and to a lesser extent for N1. This report describes the findings of an internal investigation conducted by the CDC to identify the cause(s) of the N1 and N3 false-positive reactivity. For N1, results demonstrate that contamination with a synthetic template, that occurred while the “bulk” manufactured materials were located in a research lab for quality assessment, was the cause of false reactivity in the first lot. Base pairing between the 3’ end of the N3 probe and the 3’ end of the N3 reverse primer led to amplification of duplex and larger molecules resulting in false reactivity in the N3 assay component. We conclude that flaws in both assay design and handling of the “bulk” material, caused the problems with the first lot of the 2019-nCoV Real-Time RT-PCR Diagnostic Panel. In addition, within this study, we found that the age of the examined diagnostic panel reagents increases the frequency of false positive results for N3. We discuss these findings in the context of improvements to quality control, quality assurance, and assay validation practices that have since been improved at the CDC.
Assessing Monkeypox Virus Prevalence in Small Mammals at the Human–Animal Interface in the Democratic Republic of the Congo
During 2012, 2013 and 2015, we collected small mammals within 25 km of the town of Boende in Tshuapa Province, the Democratic Republic of the Congo. The prevalence of monkeypox virus (MPXV) in this area is unknown; however, cases of human infection were previously confirmed near these collection sites. Samples were collected from 353 mammals (rodents, shrews, pangolins, elephant shrews, a potamogale, and a hyrax). Some rodents and shrews were captured from houses where human monkeypox cases have recently been identified, but most were trapped in forests and agricultural areas near villages. Real-time PCR and ELISA were used to assess evidence of MPXV infection and other Orthopoxvirus (OPXV) infections in these small mammals. Seven (2.0%) of these animal samples were found to be anti-orthopoxvirus immunoglobulin G (IgG) antibody positive (six rodents: two Funisciurus spp.; one Graphiurus lorraineus; one Cricetomys emini; one Heliosciurus sp.; one Oenomys hypoxanthus, and one elephant shrew Petrodromus tetradactylus); no individuals were found positive in PCR-based assays. These results suggest that a variety of animals can be infected with OPXVs, and that epidemiology studies and educational campaigns should focus on animals that people are regularly contacting, including larger rodents used as protein sources.
Presumptive risk factors for monkeypox in rural communities in the Democratic Republic of the Congo
Monkeypox virus (MPXV), a close relative of Variola virus, is a zoonotic virus with an unknown reservoir. Interaction with infected wildlife, bites from peri-domestic animals, and bushmeat hunting are hypothesized routes of infection from wildlife to humans. Using a Risk Questionnaire, performed in monkeypox-affected areas of rural Democratic Republic of the Congo, we describe the lifestyles and demographics associated with presumptive risk factors for MPXV infection. We generated two indices to assess risk: Household Materials Index (HMI), a proxy for socioeconomic status of households and Risk Activity Index (RAI), which describes presumptive risk for animal-to-human transmission of MPXV. Based on participant self-reported activity patterns, we found that people in this population are more likely to visit the forest than a market to fulfill material needs, and that the reported occupation is limited in describing behavior of individuals may participate. Being bitten by rodents in the home was commonly reported, and this was significantly associated with a low HMI. The highest scoring RAI sub-groups were 'hunters' and males aged ≥ 18 years; however, several activities involving MPXV-implicated animals were distributed across all sub-groups. The current analysis may be useful in identifying at-risk groups and help to direct education, outreach and prevention efforts more efficiently.
Further Assessment of Monkeypox Virus Infection in Gambian Pouched Rats (Cricetomys gambianus) Using In Vivo Bioluminescent Imaging
Monkeypox is a zoonosis clinically similar to smallpox in humans. Recent evidence has shown a potential risk of increased incidence in central Africa. Despite attempts to isolate the virus from wild rodents and other small mammals, no reservoir host has been identified. In 2003, Monkeypox virus (MPXV) was accidentally introduced into the U.S. via the pet trade and was associated with the Gambian pouched rat (Cricetomys gambianus). Therefore, we investigated the potential reservoir competence of the Gambian pouched rat for MPXV by utilizing a combination of in vivo and in vitro methods. We inoculated three animals by the intradermal route and three animals by the intranasal route, with one mock-infected control for each route. Bioluminescent imaging (BLI) was used to track replicating virus in infected animals and virological assays (e.g. real time PCR, cell culture) were used to determine viral load in blood, urine, ocular, nasal, oral, and rectal swabs. Intradermal inoculation resulted in clinical signs of monkeypox infection in two of three animals. One severely ill animal was euthanized and the other affected animal recovered. In contrast, intranasal inoculation resulted in subclinical infection in all three animals. All animals, regardless of apparent or inapparent infection, shed virus in oral and nasal secretions. Additionally, BLI identified viral replication in the skin without grossly visible lesions. These results suggest that Gambian pouched rats may play an important role in transmission of the virus to humans, as they are hunted for consumption and it is possible for MPXV-infected pouched rats to shed infectious virus without displaying overt clinical signs.
Chasing Jenner's Vaccine: Revisiting Cowpox Virus Classification
Cowpox virus (CPXV) is described as the source of the first vaccine used to prevent the onset and spread of an infectious disease. It is one of the earliest described members of the genus Orthopoxvirus, which includes the viruses that cause smallpox and monkeypox in humans. Both the historic and current literature describe \"cowpox\" as a disease with a single etiologic agent. Genotypic data presented herein indicate that CPXV is not a single species, but a composite of several (up to 5) species that can infect cows, humans, and other animals. The practice of naming agents after the host in which the resultant disease manifests obfuscates the true taxonomic relationships of \"cowpox\" isolates. These data support the elevation of as many as four new species within the traditional \"cowpox\" group and suggest that both wild and modern vaccine strains of Vaccinia virus are most closely related to CPXV of continental Europe rather than the United Kingdom, the homeland of the vaccine.
Cowpox virus: What’s in a Name?
Traditionally, virus taxonomy relied on phenotypic properties; however, a sequence-based virus taxonomy has become essential since the recent requirement of a species to exhibit monophyly. The species Cowpox virus has failed to meet this requirement, necessitating a reexamination of this species. Here, we report the genomic sequences of nine Cowpox viruses and, by combining them with the available data of 37 additional genomes, confirm polyphyly of Cowpox viruses and find statistical support based on genetic data for more than a dozen species. These results are discussed in light of the current International Committee on Taxonomy of Viruses species definition, as well as immediate and future implications for poxvirus taxonomic classification schemes. Data support the recognition of five monophyletic clades of Cowpox viruses as valid species.
Transmissibility of the Monkeypox Virus Clades via Respiratory Transmission: Investigation Using the Prairie Dog-Monkeypox Virus Challenge System
Monkeypox virus (MPXV) is endemic within Africa where it sporadically is reported to cause outbreaks of human disease. In 2003, an outbreak of human MPXV occurred in the US after the importation of infected African rodents. Since the eradication of smallpox (caused by an orthopoxvirus (OPXV) related to MPXV) and cessation of routine smallpox vaccination (with the live OPXV vaccinia), there is an increasing population of people susceptible to OPXV diseases. Previous studies have shown that the prairie dog MPXV model is a functional animal model for the study of systemic human OPXV illness. Studies with this model have demonstrated that infected animals are able to transmit the virus to naive animals through multiple routes of exposure causing subsequent infection, but were not able to prove that infected animals could transmit the virus exclusively via the respiratory route. Herein we used the model system to evaluate the hypothesis that the Congo Basin clade of MPXV is more easily transmitted, via respiratory route, than the West African clade. Using a small number of test animals, we show that transmission of viruses from each of the MPXV clade was minimal via respiratory transmission. However, transmissibility of the Congo Basin clade was slightly greater than West African MXPV clade (16.7% and 0% respectively). Based on these findings, respiratory transmission appears to be less efficient than those of previous studies assessing contact as a mechanism of transmission within the prairie dog MPXV animal model.