Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
17
result(s) for
"Carroll, Thorsten"
Sort by:
Doppler images of V1358 Ori
by
Vida, Krisztián
,
Carroll, Thorsten A.
,
Oláh, Katalin
in
Astronomy
,
Celestial bodies
,
Contributed Papers
2018
We present Doppler images of the active dwarf star V1358 Ori using high-resolution spectra from the NARVAL spectropolarimeter mounted on the Bernard Lyot Telescope. The spectra were taken between 09-20 Dec, 2013 with a resolution of R=80000. Doppler imaging was carried out with our new generation multi-line Dopper imaging code iMap (Carroll et al. 2012). 40 individual photospheric lines were selected by line depth, temperature sensitivity and blends. Two data subsets were formed to get two consecutive Doppler images. Prominent cool spots at lower latitudes are found on both maps. At 0.5 phase there is a prominent equatorial feature on both maps. Weaker polar features can be seen on the first map, which somewhat diminishes for the second map. On the first image there is a cool surface feature at 30 degrees latitude which seems to fade greatly on the second map. Around 0.75 phase, a new spot seems to form. These changes suggest a rapid surface evolution. Spot displacements may also indicate surface differential rotation, which was derived by cross-correlating the two subsequent Doppler images (see e.g. Kővári et al. 2012). We fit the latitudinal correlation peaks with a sine-squared law. The fit suggests solar-type surface differential rotation with a shear parameter of α=0.02±0.02. The shear parameter fits the
${P_{{\\rm{rot}}} - |\\alpha | $
diagram in Kővári et al. (2017) quite well.
Journal Article
State of the Field: Extreme Precision Radial Velocities
2016
The Second Workshop on Extreme Precision Radial Velocities defined circa 2015 the state of the art Doppler precision and identified the critical path challenges for reaching 10 cm s(-1) measurement precision. The presentations and discussion of key issues for instrumentation and data analysis and the workshop recommendations for achieving this bold precision are summarized here. Beginning with the High Accuracy Radial Velocity Planet Searcher spectrograph, technological advances for precision radial velocity (RV) measurements have focused on building extremely stable instruments. To reach still higher precision, future spectrometers will need to improve upon the state of the art, producing even higher fidelity spectra. This should be possible with improved environmental control, greater stability in the illumination of the spectrometer optics, better detectors, more precise wavelength calibration, and broader bandwidth spectra. Key data analysis challenges for the precision RV community include distinguishing center of mass (COM) Keplerian motion from photospheric velocities (time correlated noise) and the proper treatment of telluric contamination. Success here is coupled to the instrument design, but also requires the implementation of robust statistical and modeling techniques. COM velocities produce Doppler shifts that affect every line identically, while photospheric velocities produce line profile asymmetries with wavelength and temporal dependencies that are different from Keplerian signals. Exoplanets are an important subfield of astronomy and there has been an impressive rate of discovery over the past two decades. However, higher precision RV measurements are required to serve as a discovery technique for potentially habitable worlds, to confirm and characterize detections from transit missions, and to provide mass measurements for other space-based missions. The future of exoplanet science has very different trajectories depending on the precision that can ultimately be achieved with Doppler measurements.
Journal Article
Observational methods for stellar magnetism: from detection to cartography
by
Strassmeier, Klaus G.
,
Carroll, Thorsten A.
,
Ilyin, Ilya
in
Astronomy
,
Brown dwarfs
,
Cartography
2012
We review some of the currently used techniques to detect stellar magnetic fields on cool stars. Emphasis is put on spectropolarimetry with high-resolution spectrographs and its related data de-noising techniques and multi-line inverse modeling. Detections and results from Zeeman splittings and broadenings are briefly mentioned. We discuss some of our most recent Zeeman Doppler Imaging (ZDI) results and present a comparison of ZDI maps of the K-type WTTS V410 Tauri and the planet-hosting F8 star HD 179949 with results from other groups.
Journal Article
Zeeman-Doppler imaging of II Peg
by
Strassmeier, Klaus G.
,
Carroll, Thorsten A.
,
Ilyin, Ilya
in
Astronomy
,
Contributed Papers
,
Fields (mathematics)
2008
We present Zeeman-Doppler images of the active K2 star II Peg for the years 2004 and 2007. The surface magnetic field was reconstructed with our new ZDI code iMap which provides a full polarized radiative transfer driven inversion to simultaneously reconstruct the surface temperature and magnetic vector field distribution. II Peg shows a remarkable large scale magnetic field structure for both years. The magnetic field is predominantly located at high latitudes and is arranged in active longitudes. A dramatic evolution in the magnetic field structure is visible for the two years, where a dominant and largely unipolar field in 2004 has changed into two distinct and large scale bipolar structures in 2007.
Journal Article
Zeeman-Doppler imaging: old problems and new methods
by
Strassmeier, Klaus G.
,
Carroll, Thorsten A.
,
Ilyin, Ilya
in
Artificial neural networks
,
Astronomy
,
Contributed Papers
2008
Zeeman-Doppler Imaging (ZDI) is a powerful inversion method to reconstruct stellar magnetic surface fields. The reconstruction process is usually solved by translating the inverse problem into a regularized least-square or optimization problem. In this contribution we will emphasize that ZDI is an inherent non-linear problem and the corresponding regularized optimization is, like many non-linear problems, potentially prone to local minima. We show how this problem will be exacerbated by using an inadequate forward model. To facilitate a more consistent full radiative transfer driven approach to ZDI we describe a two-stage strategy that consist of a principal component analysis (PCA) based line profile reconstruction and a fast approximate polarized radiative transfer method to synthesize local Stokes profiles. Moreover, we introduce a novel statistical inversion method based on artificial neural networks (ANN) which provide a fast calculation of a first guess model and allows to incorporate better physical constraints into the inversion process.
Journal Article
State of the Field
2016
The Second Workshop on Extreme Precision Radial Velocities defined circa 2015 the state of the art Doppler precision and identified the critical path challenges for reaching 10 cm s−1 measurement precision. The presentations and discussion of key issues for instrumentation and data analysis and the workshop recommendations for achieving this bold precision are summarized here. Beginning with the High Accuracy Radial Velocity Planet Searcher spectrograph, technological advances for precision radial velocity (RV) measurements have focused on building extremely stable instruments. To reach still higher precision, future spectrometers will need to improve upon the state of the art, producing even higher fidelity spectra. This should be possible with improved environmental control, greater stability in the illumination of the spectrometer optics, better detectors, more precise wavelength calibration, and broader bandwidth spectra. Key data analysis challenges for the precision RV community include distinguishing center of mass (COM) Keplerian motion from photospheric velocities (time correlated noise) and the proper treatment of telluric contamination. Success here is coupled to the instrument design, but also requires the implementation of robust statistical and modeling techniques. COM velocities produce Doppler shifts that affect every line identically, while photospheric velocities produce line profile asymmetries with wavelength and temporal dependencies that are different from Keplerian signals. Exoplanets are an important subfield of astronomy and there has been an impressive rate of discovery over the past two decades. However, higher precision RV measurements are required to serve as a discovery technique for potentially habitable worlds, to confirm and characterize detections from transit missions, and to provide mass measurements for other space-based missions. The future of exoplanet science has very different trajectories depending on the precision that can ultimately be achieved with Doppler measurements.
Journal Article
State of the Field: Extreme Precision Radial Velocities The content of this publication emerged from presentations and discussion by the 150 participants in the Second Workshop on Extreme Precision Radial Velocities, held at Yale University. The talks and posters from this meeting are archived at http://eprv.astro.yale.edu
by
Ford, Eric B.
,
Segransan, Damien
,
Wang, Sharon X.
in
instrumentation: spectrographs
,
methods: observational
,
methods: statistical
2016
The Second Workshop on Extreme Precision Radial Velocities defined circa 2015 the state of the art Doppler precision and identified the critical path challenges for reaching 10 cm s−1 measurement precision. The presentations and discussion of key issues for instrumentation and data analysis and the workshop recommendations for achieving this bold precision are summarized here. Beginning with the High Accuracy Radial Velocity Planet Searcher spectrograph, technological advances for precision radial velocity (RV) measurements have focused on building extremely stable instruments. To reach still higher precision, future spectrometers will need to improve upon the state of the art, producing even higher fidelity spectra. This should be possible with improved environmental control, greater stability in the illumination of the spectrometer optics, better detectors, more precise wavelength calibration, and broader bandwidth spectra. Key data analysis challenges for the precision RV community include distinguishing center of mass (COM) Keplerian motion from photospheric velocities (time correlated noise) and the proper treatment of telluric contamination. Success here is coupled to the instrument design, but also requires the implementation of robust statistical and modeling techniques. COM velocities produce Doppler shifts that affect every line identically, while photospheric velocities produce line profile asymmetries with wavelength and temporal dependencies that are different from Keplerian signals. Exoplanets are an important subfield of astronomy and there has been an impressive rate of discovery over the past two decades. However, higher precision RV measurements are required to serve as a discovery technique for potentially habitable worlds, to confirm and characterize detections from transit missions, and to provide mass measurements for other space-based missions. The future of exoplanet science has very different trajectories depending on the precision that can ultimately be achieved with Doppler measurements.
Journal Article
The PEPSI Exoplanet Transit Survey (PETS) I: Investigating the presence of a silicate atmosphere on the super-Earth 55 Cnc e
2022
The study of exoplanets and especially their atmospheres can reveal key insights on their evolution by identifying specific atmospheric species. For such atmospheric investigations, high-resolution transmission spectroscopy has shown great success, especially for Jupiter-type planets. Towards the atmospheric characterization of smaller planets, the super-Earth exoplanet 55 Cnc e is one of the most promising terrestrial exoplanets studied to date. Here, we present a high-resolution spectroscopic transit observation of this planet, acquired with the PEPSI instrument at the Large Binocular Telescope. Assuming the presence of Earth-like crust species on the surface of 55 Cnc e, from which a possible silicate-vapor atmosphere could have originated, we search in its transmission spectrum for absorption of various atomic and ionized species such as Fe , Fe+, Ca , Ca+, Mg and K , among others. Not finding absorption for any of the investigated species, we are able to set absorption limits with a median value of 1.9 x RP. In conclusion, we do not find evidence of a widely extended silicate envelope on this super-Earth reaching several planetary radii.
The potassium absorption on HD189733b and HD209458b
by
Kitzmann, Daniel
,
Alexoudi, Xanthippi
,
Pino, Lorenzo
in
Absorption
,
Extrasolar planets
,
Planetary atmospheres
2019
In this work, we investigate the potassium excess absorption around 7699A of the exoplanets HD189733b and HD209458b. For this purpose, we used high spectral resolution transit observations acquired with the 2 x 8.4m Large Binocular Telescope (LBT) and the Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI). For a bandwidth of 0.8A, we present a detection > 7-sigma with an absorption level of 0.18% for HD189733b. Applying the same analysis to HD209458b, we can set 3-sigma upper limit of 0.09%, even though we do not detect a K- excess absorption. The investigation suggests that the K- feature is less present in the atmosphere of HD209458b than in the one of HD189733b. This comparison confirms previous claims that the atmospheres of these two planets must have fundamentally different properties.
KELT-21b: A Hot Jupiter Transiting the Rapidly-Rotating Metal-Poor Late-A Primary of a Likely Hierarchical Triple System
by
Gaudi, B Scott
,
Beatty, Thomas G
,
Novati, Sebastiano Calchi
in
Extrasolar planets
,
Gas giant planets
,
Image resolution
2018
We present the discovery of KELT-21b, a hot Jupiter transiting the \\(V=10.5\\) A8V star HD 332124. The planet has an orbital period of \\(P=3.6127647\\pm0.0000033\\) days and a radius of \\(1.586_{-0.040}^{+0.039}\\) \\(R_J\\). We set an upper limit on the planetary mass of \\(M_P<3.91\\) \\(M_J\\) at \\(3\\sigma\\) confidence. We confirmed the planetary nature of the transiting companion using this mass limit and Doppler tomographic observations to verify that the companion transits HD 332124. These data also demonstrate that the planetary orbit is well-aligned with the stellar spin, with a sky-projected spin-orbit misalignment of \\(\\lambda=-5.6_{-1.9}^{+1.7 \\circ}\\). The star has \\(T_{\\mathrm{eff}}=7598_{-84}^{+81}\\) K, \\(M_*=1.458_{-0.028}^{+0.029}\\) \\(M_{\\odot}\\), \\(R_*=1.638\\pm0.034\\) \\(R_{\\odot}\\), and \\(v\\sin I_*=146\\) km s\\(^{-1}\\), the highest projected rotation velocity of any star known to host a transiting hot Jupiter. The star also appears to be somewhat metal-poor and \\(\\alpha\\)-enhanced, with [Fe/H]\\(=-0.405_{-0.033}^{+0.032}\\) and [\\(\\alpha\\)/Fe]\\(=0.145 \\pm 0.053\\); these abundances are unusual, but not extraordinary, for a young star with thin-disk kinematics like KELT-21. High-resolution imaging observations revealed the presence of a pair of stellar companions to KELT-21, located at a separation of 1.2\" and with a combined contrast of \\(\\Delta K_S=6.39 \\pm 0.06\\) with respect to the primary. Although these companions are most likely physically associated with KELT-21, we cannot confirm this with our current data. If associated, the candidate companions KELT-21 B and C would each have masses of \\(\\sim0.12\\) \\(M_{\\odot}\\), a projected mutual separation of \\(\\sim20\\) AU, and a projected separation of \\(\\sim500\\) AU from KELT-21. KELT-21b may be one of only a handful of known transiting planets in hierarchical triple stellar systems.