Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
228 result(s) for "Carvalho, Edgar M."
Sort by:
CCR5 promotes the migration of pathological CD8+ T cells to the leishmanial lesions
Cytolytic CD8 + T cells mediate immunopathology in cutaneous leishmaniasis without controlling parasites. Here, we identify factors involved in CD8 + T cell migration to the lesion that could be targeted to ameliorate disease severity. CCR5 was the most highly expressed chemokine receptor in patient lesions, and the high expression of CCL3 and CCL4, CCR5 ligands, was associated with delayed healing of lesions. To test the requirement for CCR5, Leishmania- infected Rag1 -/- mice were reconstituted with CCR5 -/- CD8 + T cells. We found that these mice developed smaller lesions accompanied by a reduction in CD8 + T cell numbers compared to controls. We confirmed these findings by showing that the inhibition of CCR5 with maraviroc, a selective inhibitor of CCR5, reduced lesion development without affecting the parasite burden. Together, these results reveal that CD8 + T cells migrate to leishmanial lesions in a CCR5-dependent manner and that blocking CCR5 prevents CD8 + T cell-mediated pathology.
CD8+ T cell cytotoxicity mediates pathology in the skin by inflammasome activation and IL-1β production
Deregulated CD8+ T cell cytotoxicity plays a central role in enhancing disease severity in several conditions. However, we have little understanding of the mechanisms by which immunopathology develops as a consequence of cytotoxicity. Using murine models of inflammation induced by the protozoan parasite leishmania, and data obtained from patients with cutaneous leishmaniasis, we uncovered a previously unrecognized role for NLRP3 inflammasome activation and IL-1β release as a detrimental consequence of CD8+ T cell-mediated cytotoxicity, ultimately resulting in chronic inflammation. Critically, pharmacological blockade of NLRP3 or IL-1β significantly ameliorated the CD8+ T cell-driven immunopathology in leishmania-infected mice. Confirming the relevance of these findings to human leishmaniasis, blockade of the NLRP3 inflammasome in skin biopsies from leishmania-infected patients prevented IL-1β release. Thus, these studies link CD8+ T cell cytotoxicity with inflammasome activation and reveal novel avenues of treatment for cutaneous leishmaniasis, as well as other of diseases where CD8+ T cell-mediated cytotoxicity induces pathology.
The Role of Nitric Oxide and Reactive Oxygen Species in the Killing of Leishmania braziliensis by Monocytes from Patients with Cutaneous Leishmaniasis
Human cutaneous leishmaniasis (CL) caused by Leishmania braziliensis, presents an exaggerated Th1 response that is associated with ulcer development. Macrophages are the primary cells infected by Leishmania parasites and both reactive oxygen species (ROS) and nitric oxide (NO) are important in the control of Leishmania by these cells. The mechanism involved in the killing of L. braziliensis is not well established. In this study, we evaluate the role of ROS and NO in the control of L. braziliensis infection by monocytes from CL patients. After in vitro infection with L. braziliensis, the oxidative burst by monocytes from CL patients was higher when compared to monocytes from healthy subjects (HS). Inhibition of the ROS pathway caused a significant decrease in the oxidative burst in L. braziliensis infected monocytes from both groups. In addition, we evaluated the intracellular expression of ROS and NO in L. braziliensis-infected monocytes. Monocytes from CL patients presented high expression of ROS after infection with L. braziliensis. The expression of NO was higher in monocytes from CL patients as compared to expression in monocytes from HS. A strong positive correlation between NO production and lesion size of CL patients was observed. The inhibition of ROS production in leishmania-infected monocytes from CL patients allowed the growth of viable promastigotes in culture supernatants. Thus, we demonstrate that while production of ROS is involved in L. braziliensis killing, NO alone is not sufficient to control infection and may contribute to the tissue damage observed in human CL.
Association of Intestinal Helminthiasis with Disseminated Leishmaniasis, Brazil
Disseminated leishmaniasis is an emerging clinical form of Leishmania braziliensis infection. Evidence shows that co-infection by L. braziliensis and intestinal helminths does not affect clinical manifestations or response to therapy in cutaneous leishmaniasis patients. We evaluated whether co-infection was associated with those aspects in disseminated leishmaniasis patients in Brazil.
TNF-induced metalloproteinase-9 production is associated with neurological manifestations in HTLV-1-infected individuals
HTLV-1-infected individuals may develop a neurologic inflammatory condition known as HTLV-1-associated myelopathy (HAM/TSP), in which the high production of TNF is observed. These patients exhibit higher proviral loads, enhanced production of proinflammatory cytokines and lymphocyte proliferation in comparison to asymptomatic HTLV-1 carriers and those presenting overactive bladder (OAB-HTLV-infected). Metalloproteinases (MMPs) are known to degrade the components of the blood-brain barrier, favoring the migration of infected cells into the central nervous system. Moreover, the unbalanced production of MMPs and their inhibitors (TIMPs) has also been associated with tissue damage. The present work studied the production of MMP-9 and TIMPs in HTLV-1-infected individuals with and without neurological manifestations. HAM/TSP patients presented higher concentrations of MMP-9 in peripheral blood mononuclear cell (PBMC) culture supernatants, as well as a higher MMP-9/TIMP-3 ratio when compared to the other groups studied. MMP-9 levels positively correlated with proviral load and TNF in OAB-HTLV-infected individuals, and the in vitro neutralization of TNF significantly decreased MMP-9 levels in PBMC culture supernatants. Our findings indicate an association between MMP-9 production and the proinflammatory state associated with HTLV-1 infection, as well as HAM/TSP.
Disseminated Leishmaniasis, a Severe Form of Leishmania braziliensis Infection
Disseminated leishmaniasis (DL) is an emergent severe disease manifesting with multiple lesions. To determine the relationship between immune response and clinical and therapeutic outcomes, we studied 101 DL and 101 cutaneous leishmaniasis (CL) cases and determined cytokines and chemokines in supernatants of mononuclear cells stimulated with leishmania antigen. Patients were treated with meglumine antimoniate (20 mg/kg) for 20 days (CL) or 30 days (DL); 19 DL patients were instead treated with amphotericin B, miltefosine, or miltefosine and meglumine antimoniate. High levels of chemokine ligand 9 were associated with more severe DL. The cure rate for meglumine antimoniate was low for both DL (44%) and CL (60%), but healing time was longer in DL (p = 0.003). The lowest cure rate (22%) was found in DL patients with >100 lesions. However, meglumine antimoniate/miltefosine treatment cured all DL patients who received it; therefore, that combination should be considered as first choice therapy.
IL-17 Mediates Immunopathology in the Absence of IL-10 Following Leishmania major Infection
Leishmaniasis, resulting from infection with the protozoan parasite Leishmania, consists of a wide spectrum of clinical manifestations, from healing cutaneous lesions to fatal visceral infections. A particularly severe form of cutaneous leishmaniasis, termed mucosal leishmaniasis, exhibits decreased IL-10 levels and an exaggerated inflammatory response that perpetuates the disease. Using a mouse model of leishmaniasis, we investigated what cytokines contribute to increased pathology when IL-10-mediated regulation is absent. Leishmania major infected C57BL/6 mice lacking IL-10 regulation developed larger lesions than controls, but fewer parasites. Both IFN-γ and IL-17 levels were substantially elevated in mice lacking the capacity to respond to IL-10. IFN-γ promoted an increased infiltration of monocytes, while IL-17 contributed to an increase in neutrophils. Surprisingly, however, we found that IFN-γ did not contribute to increased pathology, but instead regulated the IL-17 response. Thus, blocking IFN-γ led to a significant increase in IL-17, neutrophils and disease. Similarly, the production of IL-17 by cells from leishmaniasis patients was also regulated by IL-10 and IFN-γ. Additional studies found that the IL-1 receptor was required for both the IL-17 response and increased pathology. Therefore, we propose that regulating IL-17, possibly by downregulating IL-1β, may be a useful approach for controlling immunopathology in leishmaniasis.
Short communication: The miR-155a-5p is correlated with increased ROS and impaired apoptosis in macrophages infected by Leishmania braziliensis
Cutaneous leishmaniasis (CL) caused by Leishmania braziliensis , is a disease characterized by well-limited ulcerated lesions with raised borders in exposed parts of the body. miRNAs are recognized for their role in the complex and plastic interaction between host and pathogens, either as part of the host’s strategy to neutralize infection or as a molecular mechanism employed by the pathogen to modulate host inflammatory pathways to remain undetected. The mir155 targets a broad range of inflammatory mediators, following toll-like receptors (TLRs) signaling. In this work, we evaluated the effects of the expression of miR155a-5p in human macrophages infected with L. braziliensis. Our results show that miR155a-5p is inversely correlated with early apoptosis and conversely, seems to influence an increment in the oxidative burst in these cells. Altogether, we spotted a functional role of the miR155a-5p in CL pathogenesis, raising the hypothesis that an increased miR-155 expression by TLR ligands influences cellular mechanisms settled to promote both killing and control of parasite density after infection.
Topical AuNPs-Cys-Sm29 gel modulates the course of lesion development in experimental cutaneous leishmaniasis
The Sm29 antigen from Schistosoma mansoni has been shown to downregulate excessive inflammation associated with immune-mediated diseases. In contrast, cutaneous leishmaniasis (CL) caused by Leishmania (Viannia) braziliensis is marked by an inflammatory response that, when uncontrolled, contributes to disease pathology. In this study, we evaluated the therapeutic potential of topical rSm29 in combination with meglumine antimoniate (Sb v ) in experimental murine CL. First, rSm29 was functionalized onto spherical gold nanoparticles using a cysteamine linker (AuNPs-Cys- Sm 29). Topical application of this formulation of rSm29 significantly decreased ear lesion thickness, and the combination of topical AuNPs-Cys- Sm 29 plus intraperitoneal Sb v also significantly reduced ear lesion thickness, parasite load in the infection site, and the local inflammatory infiltrate when compared to mice treated with Sb v only. The production of IFN-γ, TNF, and IL-10 was reduced in the draining lymph node, as well as the total number of CD3 + CD4 + IFN + and CD3 + CD4 + TNF + T cells in the infection site. This study demonstrated that combination therapy with topical AuNPs-Cys- Sm 29 + systemic Sb v reduced inflammation without compromising parasite clearance. These findings highlight the potential of AuNPs-Cys- Sm 29 as a host-directed strategy in treating cutaneous leishmaniasis (CL).
NKG2D promotes CD8 T cell-mediated cytotoxicity and is associated with treatment failure in human cutaneous leishmaniasis
Cutaneous leishmaniasis exhibits a spectrum of clinical presentations dependent upon the parasites’ persistence and host immunopathologic responses. Although cytolytic CD8 T cells cannot control the parasites, they significantly contribute to pathologic responses. In a murine model of cutaneous leishmaniasis, we previously found that NKG2D plays a role in the ability of cytolytic CD8 T cells to promote disease in leishmanial lesions. Here, we investigated whether NKG2D plays a role in human disease. We found that NKG2D and its ligands were expressed within lesions from L . braziliensis -infected patients and that IL-15 and IL-1β were factors driving NKG2D and NKG2D ligand expression, respectively. Blocking NKG2D reduced degranulation by CD8 T cells in a subset of patients. Additionally, our transcriptional analysis of patients’ lesions found that patients who failed the first round of treatment exhibited higher expression of KLRK1 , the gene coding for NKG2D, than those who responded to treatment. These findings suggest that NKG2D may be a promising therapeutic target for ameliorating disease severity in cutaneous leishmaniasis caused by L . braziliensis infection.