Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
122 result(s) for "Carvalho, Laurence"
Sort by:
Phenological sensitivity to climate across taxa and trophic levels
Differences in phenological responses to climate change among species can desynchronise ecological interactions and thereby threaten ecosystem function. To assess these threats, we must quantify the relative impact of climate change on species at different trophic levels. Here, we apply a Climate Sensitivity Profile approach to 10,003 terrestrial and aquatic phenological data sets, spatially matched to temperature and precipitation data, to quantify variation in climate sensitivity. The direction, magnitude and timing of climate sensitivity varied markedly among organisms within taxonomic and trophic groups. Despite this variability, we detected systematic variation in the direction and magnitude of phenological climate sensitivity. Secondary consumers showed consistently lower climate sensitivity than other groups. We used mid-century climate change projections to estimate that the timing of phenological events could change more for primary consumers than for species in other trophic levels (6.2 versus 2.5–2.9 days earlier on average), with substantial taxonomic variation (1.1–14.8 days earlier on average). An ambitious study has used more than 10,000 datasets to examine how the phenological characteristics—such as the timing of reproduction—of various taxa alter in response to climate change, and suggests that differing levels of climate sensitivity could lead to the desynchronization of seasonal events over time. The shifting biological seasons Variations in the phenological responses of different species to climate change have fuelled concerns that key species interactions may desynchronize over time, with consequences for ecosystem functioning. Stephen Thackeray et al . examine the climate sensitivity of 812 terrestrial and aquatic taxa across the United Kingdom, using more than 10,000 phenological data sets spanning 1960 to 2012, together with temperature and precipitation data. There was a systematic difference in the magnitude and direction of phenological climate sensitivity across trophic levels, despite marked heterogeneity among organisms sharing taxonomic affinities and trophic position. In particular, secondary consumers showed lower levels of climate sensitivity than primary producers and consumers. The authors suggest that the differential sensitivity of phenology to climate across trophic levels could result in the desynchronization of seasonal events in the future.
Capacity challenges in water quality monitoring: understanding the role of human development
Monitoring the qualitative status of freshwaters is an important goal of the international community, as stated in the Sustainable Development Goal (SDGs) indicator 6.3.2 on good ambient water quality. Monitoring data are, however, lacking in many countries, allegedly because of capacity challenges of less-developed countries. So far, however, the relationship between human development and capacity challenges for water quality monitoring have not been analysed systematically. This hinders the implementation of fine-tuned capacity development programmes for water quality monitoring. Against this background, this study takes a global perspective in analysing the link between human development and the capacity challenges countries face in their national water quality monitoring programmes. The analysis is based on the latest data on the human development index and an international online survey amongst experts from science and practice. Results provide evidence of a negative relationship between human development and the capacity challenges to meet SDG 6.3.2 monitoring requirements. This negative relationship increases along the course of the monitoring process, from defining the enabling environment, choosing parameters for the collection of field data, to the analytics and analysis of five commonly used parameters (DO, EC, pH, TP and TN). Our assessment can be used to help practitioners improve technical capacity development activities and to identify and target investment in capacity development for monitoring.
Nutrient and microbial water quality of the upper Ganga River, India: identification of pollution sources
The Ganga River is facing mounting environmental pressures due to rapidly increasing human population, urbanisation, industrialisation and agricultural intensification, resulting in worsening water quality, ecological status and impacts on human health. A combined inorganic chemical, algal and bacterial survey (using flow cytometry and 16S rRNA gene sequencing) along the upper and middle Ganga (from the Himalayan foothills to Kanpur) was conducted under pre-monsoon conditions. The upper Ganga had total phosphorus (TP) and total dissolved nitrogen concentrations of less than 100 μg l −1 and 1.0 mg l −1 , but water quality declined at Kannauj (TP = 420 μg l −1 ) due to major nutrient pollution inputs from human-impacted tributaries (principally the Ramganga and Kali Rivers). The phosphorus and nitrogen loads in these two tributaries and the Yamuna were dominated by soluble reactive phosphorus and ammonium, with high bacterial loads and large numbers of taxa indicative of pathogen and faecal organisms, strongly suggesting sewage pollution sources. The high nutrient concentrations, low flows, warm water and high solar radiation resulted in major algal blooms in the Kali and Ramganga, which greatly impacted the Ganga. Microbial communities were dominated by members of the Phylum Proteobacteria, Bacteriodetes and Cyanobacteria, with communities showing a clear upstream to downstream transition in community composition. To improve the water quality of the middle Ganga, and decrease ecological and human health risks, future mitigation must reduce urban wastewater inputs in the urbanised tributaries of the Ramganga, Kali and Yamuna Rivers.
A phytoplankton trophic index to assess the status of lakes for the Water Framework Directive
Despite improvements in wastewater treatment systems, the impact of anthropogenic nutrient sources remains a key issue for the management of European lakes. The Water Framework Directive (WFD) provides a mechanism through which progress can be made on this issue. The Directive requires a classification of the ecological status of phytoplankton, which includes an assessment of taxonomic composition. In this paper, we present a composition metric, the plankton trophic index, that was developed in the WISER EU FP7 project and demonstrate how it has been used to compare national phytoplankton classification systems in Northern and Central Europe. The metric was derived from summer phytoplankton data summarised by genus from 1,795 lakes, covering 20 European countries. We show that it is significantly related to total phosphorus concentrations, but that it is also sensitive to alkalinity, lake size and climatic variables. Through the use of country-specific reference values for the index, we demonstrate that it is significantly related to other national phytoplankton assessment systems and illustrate for a single European (intercalibration) lake type how it was used to intercalibrate WFD boundaries from different countries.
Sustaining recreational quality of European lakes: minimizing the health risks from algal blooms through phosphorus control
1. A safe, clean water supply is critical for sustaining many important ecosystem services provided by freshwaters. The development of cyanobacterial blooms in lakes and reservoirs has a major impact on the provision of these services, particularly limiting their use for recreation and water supply for drinking and spray irrigation. Nutrient enrichment is thought to be the most important pressure responsible for the widespread increase in cyanobacterial blooms in recent decades. Quantifying how nutrients limit cyanobacterial abundance in lakes is, therefore, a key need for setting robust targets for the management of freshwaters. 2. Using a data set from over 800 European lakes, we highlight the use of quantile regression modelling for understanding the maximum potential capacity of cyanobacteria in relation to total phosphorus (TP) and the use of a range of quantile responses, alongside World Health Organisation (WHO) health alert thresholds for recreational waters, for setting robust phosphorus targets for lake management in relation to water use. 3. The analysis shows that cyanobacteria exhibit a nonlinear response to phosphorus with the sharpest increase in cyanobacterial abundance occurring in the TP range from about 20 μg L⁻¹ up to about 100 μg L⁻¹. 4. The likelihood of exceeding the World Health Organisation (WHO) 'low health alert' threshold increases from about 5% exceedance at 16 μg L⁻¹ to 40% exceedance at 54 μg L⁻¹. About 50% of the studied lakes remain below this WHO health alert threshold, irrespective of high summer TP concentrations, highlighting the importance of other factors affecting cyanobacteria population growth and loss processes, such as high flushing rate. 5. Synthesis and applications. Developing a more quantitative understanding of the effect of nutrients on cyanobacterial abundance in freshwater lakes provides important knowledge for restoring and sustaining a safe, clean water supply for multiple uses. Our models can be used to set nutrient targets to sustain recreational services and provide different levels of precaution that can be chosen dependent on the importance of the service provision.
Integrating Inland and Coastal Water Quality Data for Actionable Knowledge
Water quality measures for inland and coastal waters are available as discrete samples from professional and volunteer water quality monitoring programs and higher-frequency, near-continuous data from automated in situ sensors. Water quality parameters also are estimated from model outputs and remote sensing. The integration of these data, via data assimilation, can result in a more holistic characterization of these highly dynamic ecosystems, and consequently improve water resource management. It is becoming common to see combinations of these data applied to answer relevant scientific questions. Yet, methods for scaling water quality data across regions and beyond, to provide actionable knowledge for stakeholders, have emerged only recently, particularly with the availability of satellite data now providing global coverage at high spatial resolution. In this paper, data sources and existing data integration frameworks are reviewed to give an overview of the present status and identify the gaps in existing frameworks. We propose an integration framework to provide information to user communities through the the Group on Earth Observations (GEO) AquaWatch Initiative. This aims to develop and build the global capacity and utility of water quality data, products, and information to support equitable and inclusive access for water resource management, policy and decision making.
Large Biodiversity Monitoring Gaps Remain Across Europe
Transnational monitoring frameworks are crucial for tracking progress and guiding biodiversity conservation policies at continental and global levels. Yet their development is constrained by the lack of comprehensive analyses of biodiversity monitoring gaps. Focusing on Europe, we quantified the shortfall between data integrated by transnational initiatives and the requirements for producing 48 Essential Biodiversity Variables (EBVs) identified with stakeholders for continent‐wide monitoring. About 20% of EBVs lacked transnational data integration, and existing initiatives often covered fewer than 70% of countries. Even where integration occurred, major deficiencies remained in sampling standardization, taxonomic and ecosystem coverage, spatial and temporal resolution, data collection frequency, and data accessibility. Monitoring shortfalls varied widely across countries. Addressing monitoring gaps will require sustained funding for new transnational initiatives, stronger alignment between national and supranational efforts, improved sampling designs, novel technologies, and equitable open data sharing. Establishing such a framework could offer a model for global biodiversity monitoring.
Sediment phosphorus cycling in a large shallow lake: spatio-temporal variation in phosphorus pools and release
Sediment and water column phosphorus fractions were recorded monthly for one year (April 2004-April 2005) in a shallow lake recovering from nutrient pollution (Loch Leven, Scotland). Equilibrium phosphate concentration (EPC0) and gross sediment phosphorus (P) release rates were estimated from laboratory experiments. Pore water and organic P pools were lowest during warm water periods whereas bottom water P was lowest during cold water periods. Reductant-soluble, organic, metal oxide-adsorbed, residual and sediment total phosphorus pools all varied significantly with overlying water depth. Short-term, high magnitude, redox initiated P release events occurred in late summer and winter as a result of anoxic sediment conditions. Lower magnitude long-term release conditions were maintained for most of the year, most likely as a result of organic P cycling and maintenance of high concentration gradients between the pore and bottom water P pools. Estimates of summer P uptake/release rates, across an intact sediment-water interface, suggested that maximum gross internal release was ~12 mg SRP m-² lake surface area d-¹ with EPC0 values ranging between 180 and 270 μg P L-¹. This study highlights the biological mediation of internal loading in shallow eutrophic lakes, and in particular, the role of sediment algae in decreasing, and sediment bacteria in enhancing, sediment P release.
Can people detect the loss of water quality? A field experiment to evaluate the correlation between visual perception and water eutrophication degree
Abstract Aim The quantity and quality of water are essential to many ecosystem services, biodiversity and human well-being. In the present paper, we used a field experiment to evaluate the visual perception of the public regarding the loss of water quality associated with eutrophication and greening of water. We hypothesized that with an increase in eutrophication (i.e. greening of water due to increased Chlorophyll-a), people can detect a loss of water quality and threats to ecosystem services. Methods We used an experimental area composed of six mesocosms (500L water tanks) with a gradient of chlorophyll-a varying from clear water (without chlorophyll-a) up to eutrophic mesocosms (very green water). A total of 100 people visited the experimental area in-situ, and 83 people visualized pictures of the mesocosms. Results Our results indicated that people were able to detect the loss of water quality associated with increased concentrations of chlorophyll-a, and recognized that these were less suitable for recreational activity and consumption. Moreover, this perception did not vary by gender, formal education, or frequency of visits to aquatic ecosystems. Conclusions The results highlight the clear potential of visual public perception to be used as a simple, rapid, early-warning strategy for monitoring programs of water quality and also an approach that strengthens the link between science and society. Resumo Objetivo A quantidade e a qualidade da água são essenciais para manutenção de muitos serviços ecossistêmicos, biodiversidade e bem-estar humano. No presente trabalho, utilizamos um experimento de campo para avaliar a percepção visual do público em relação à perda de qualidade da água associada à eutrofização e esverdeamento da água. Nós hipotetizamos que, com um aumento na eutrofização (ou seja, esverdeamento da água devido ao aumento da clorofila-a), as pessoas podem detectar uma perda de qualidade da água e ameaças aos serviços ecossistêmicos. Métodos Nós utilizamos uma área experimental composta por seis mesocosmos (caixas d'água de 500L) com gradiente de clorofila-a variando de águas claras (sem clorofila-a) até mesocosmos eutróficos (águas muito verdes). Um total de 100 pessoas visitaram a área experimental in-situ, e 83 pessoas visualizaram imagens dos mesocosmos. Resultados Nossos resultados indicaram que as pessoas foram capazes de detectar a perda de qualidade da água associada ao aumento das concentrações de clorofila-a, e reconheceram que estas eram menos adequadas para atividade recreativa e consumo. Além disso, essa percepção não variou por gênero, educação formal ou frequência de visitas aos ecossistemas aquáticos. Conclusões Os resultados evidenciam potencial da percepção visual do público como uma estratégia simples, rápida e de alerta precoce para programas de monitoramento da qualidade da água e também uma abordagem que fortalece o vínculo entre ciência e sociedade.
The benefits of restoring urban lakes in the tropics
Lake restoration in developing economies, particularly in the tropics, is a major challenge given the severe levels of pollution from untreated wastewater and the warm climate conducive to microbial and algal growth. Restoration goals are often ill-defined or unachievable. Here we describe the successes that can be achieved through a control, compared with intervention case study of the two urban lakes in Bengaluru, India, one of the world’s largest and fastest growing mega-cities. The unrestored control, Bellandur Lake, was severely polluted by 231 million litres per day (MLD) of untreated wastewater. The restoration site, Jakkur Lake, receives 10 MLD of treated wastewater and also receives some tertiary treatment by circulating the effluent through a constructed wetland before it enters the lake. The water quality of Bellandur Lake can only be described as extremely bad. Organic pollution levels in the main inflow were high (BOD5 of 199 mg/l, faecal coliforms 6.9 Log MPN/100 ml, total suspended solids (TSS) of 285 mg/l) leading to the complete deoxygenation of lake even at the surface. The levels exceeded use-base standards for bathing water and fisheries. The high levels of organic pollution and low oxygen conditions also led to extreme levels of methane emissions that occasionally led to the lake surface catching fire. Total nitrogen (TN) and total phosphorus (TP) concentrations in the lake were extremely high (47 mg/l and 6.3 mg/l) respectively with low Secchi depth (SD). Despite the high nutrient levels, very little phytoplankton growth occurred (chlorophyll-a of 0 mg/l), most likely due to the high TSS loads which restricted light availability. In comparison, the wastewater treatment and wetland at Jakkur Lake markedly reduced organic pollution of the main inflow (BOD5 of 32 mg/l, faecal coliforms 4.1 Log MPN/100 ml, TSS of 48 mg/l). Levels of coliforms in the lake were above the standards for bathing waters. Total nitrogen (TN) and total phosphorus (TP) concentrations in the lake reduced (10.5 mg/l, 2.4 mg/l) but still classify the lake as extremely hypereutrophic. The lower TSS levels did, however, enable dense phytoplankton blooms to develop (max chlorophyll-a of 600 µg/l) which are in part responsible for the higher levels of dissolved oxygen in the lake water, albeit and as expected with large diurnal fluctuations. The comparison highlights the benefits that standard wastewater treatment provides to restore urban tropical lakes in context of rapidly urbanising catchments, and even though Jakkur Lake is by no means fully restored, it sustains water quality that allow propagation of fisheries and shore-based recreation. It also greatly contributes to greenhouse gas emission reductions. Further restoration measures are likely needed for urban tropical lakes, particularly to tackle pollutant loads in monsoon periods, but restoring community pride in the uses of a lake is an important milestone of the restoration efforts.