Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
560 result(s) for "Casella, E."
Sort by:
Decoding the Interplay Between Tidal Notch Geometry and Sea‐Level Variability During the Last Interglacial (Marine Isotope Stage 5e) High Stand
Relic coastal landforms (fossil corals, cemented intertidal deposits, or erosive features carved onto rock coasts) serve as sea‐level index points (SLIPs), that are widely used to reconstruct past sea‐level changes. Traditional SLIP‐based sea‐level reconstructions face challenges in capturing continuous sea‐level variability and dating erosional SLIPs, such as tidal notches. Here, we propose a novel approach to such challenges. We use a numerical model of cliff erosion embedded within a Monte Carlo simulation to investigate the most likely sea‐level scenarios responsible for shaping one of the best‐preserved tidal notches of Last Interglacial age in Sardinia, Italy. Results align with Glacial Isostatic Adjustment model predictions, indicating that synchronized or out‐of‐sync ice‐volume shifts in Antarctic and Greenland ice sheets can reproduce the notch morphology, with sea level confidently peaking at 6 m and only under a higher than present erosion regime. This new approach yields insight into sea‐level trends during the Last Interglacial. Plain Language Summary Scientists typically investigate the position of sea level in geological time using the elevation, age, and characteristics of fossil marine organisms living in shallow water (e.g., coral reefs), beach deposits, or erosional features that were formed near the sea level. However, these indicators offer only fragmented, if not only point‐like information in time and not a continuous sea‐level record. To overcome this issue, we use a numerical model that reconstructs the shape of tidal notches (i.e., indentations created close to sea level in carbonate cliffs). We compare model‐generated notch shapes with the real shape of the tidal notch, and we produce a set of continuous sea‐level histories that are more likely to have produced one of the best‐preserved fossil tidal notches in the Orosei Gulf, Sardinia, Italy, carved during the Last Interglacial highstand, 125.000 years ago. Our findings suggest that whether the ice sheets in Antarctica and Greenland melted at the same time or separately, both scenarios could reproduce the actual shape of the tidal notch we observe at present. Our findings indicate that the erosion rate during that period was higher than present and the sea level is very likely to have reached up to 6 m. Key Points Cliff erosion modeling and Monte Carlo analysis indicate tidal notch geometry can offer a continuous record of past sea level variability The geometry of Orosei’s tidal notch, Italy can be replicated through simultaneous or asynchronous Antarctic–Greenland ice melting scenarios The morphology of the Last Interglacial notch is more efficiently replicated using higher‐than‐present erosion rates and a 6 m sea‐level peak
Assessing the relative accuracy of coral heights reconstructed from drones and structure from motion photogrammetry on coral reefs
Low-altitude high-resolution aerial photographs allow for the reconstruction of structural properties of shallow coral reefs and the quantification of their topographic complexity. This study shows the scope and limitations of two-media (air/water) Structure from Motion—Multi-View Stereo reconstruction method using drone aerial photographs to reconstruct coral height. We apply this method in nine different sites covering a total area of about 7000 m2, and we examine the suitability of the method to obtain topographic complexity estimates (i.e., seafloor rugosity). A simple refraction correction and survey design allowed reaching a root mean square error of 0.1 m for the generated digital models of the seafloor (without the refraction correction the root mean square error was 0.2 m). We find that the complexity of the seafloor extracted from the drone digital models is slightly underestimated compared to the one measured with a traditional in situ survey method.
Community composition predicts photogrammetry-based structural complexity on coral reefs
The capacity of coral reefs to provide ecosystem services is directly related to their three-dimensional structural complexity. This parameter is also correlated with total fish biomass, reef resilience to external stresses and the dissipation of wave energy. However, information on structural complexity (i.e., reef rugosity) has not always been assessed in historical monitoring programs, and long-term trends are sometimes unavailable. In this study, we show that it is possible to predict and hindcast the three-dimensional complexity of coral reefs by combining photogrammetry, statistical modeling and historical benthic community data. We calibrated lasso generalized linear models and boosted regression trees to predict structural complexity from photogrammetry transects around Moorea (French Polynesia). Our models were able to predict structural complexity with high accuracy (cross-validated R2 ranges between 0.81 and 0.9). We then used our models to hindcast historical trends in 3D structural complexity using community composition data collected in Moorea from 2004 to 2017. The temporal analysis highlighted the severe impact of a crown-of-thorns (COTS) outbreak from 2006 to 2009 and Cyclone Oli in 2010. In conjunction, these two events reduce coral cover from ~ 50% to almost zero. While the collection of actual data is always to be preferred, our model captured these effects, confirming the capacity of this modeling technique to predict structural complexity on the basis of assemblage composition.
Yield and spatial supply of bioenergy poplar and willow short-rotation coppice in the UK
Limited information on likely supply and spatial yield of bioenergy crops exists for the UK. Here, productivities are reported of poplar (Populus spp.) and willow (Salix spp.) grown as short-rotation coppice (SRC), using data from a large 49-site yield trial network. A partial least-squares regression technique was used to upscale actual field trial observations across England and Wales. Spatial productivity was then assessed under different land-use scenarios. Mean modelled yields ranged between 4.9 and 10.7 oven-dry tonnes (odt) ha⁻¹ yr⁻¹. Yields were generally higher in willow than in poplar, reflecting the susceptibility of older poplar genotypes to rust and their tendency for single stem dominance. Replacing 10% of arable land, 20% of improved grassland and 100% of set-aside grassland in England and Wales with the three most productive genotypes would yield 13 Modt of biomass annually (supplying 7% of UK electricity production or 48% of UK combined heat and power (CHP) production). Results show existing SRC genotypes have the immediate potential to be an important component of a mixed portfolio of renewables and that, in future, as new and improved genotypes become available, higher yields could extend this potential further.
MASSIVE-SCALE TREE MODELLING FROM TLS DATA
This paper presents a method for reconstructing automatically the quantitative structure model of every tree in a forest plot from terrestrial laser scanner data. A new feature is the automatic extraction of individual trees from the point cloud. The method is tested with a 30-m diameter English oak plot and a 80-m diameter Australian eucalyptus plot. For the oak plot the total biomass was overestimated by about 17 %, when compared to allometry (N = 15), and the modelling time was about 100 min with a laptop. For the eucalyptus plot the total biomass was overestimated by about 8.5 %, when compared to a destructive reference (N = 27), and the modelling time was about 160 min. The method provides accurate and fast tree modelling abilities for, e.g., biomass estimation and ground truth data for airborne measurements at a massive ground scale.
Extreme Rainfall in the Mediterranean
Flash floods induced by extreme rainfall events represent one of the most life-threatening phenomena in the Mediterranean. While their catastrophic ground effects are well documented by postevent surveys, the extreme rainfall events that generate them are still difficult to observe properly. Being able to collect observations of such events will help scientists to better understand and model these phenomena. The recent flash floods that hit the Liguria region (Italy) between the end of October and beginning of November 2011 give us the opportunity to use the measurements available from a large number of sensors, both ground based and spaceborne, to characterize these events. In this paper, the authors analyze the role of the key ingredients (e.g., unstable air masses, moist low-level jets, steep orography, and a slow-evolving synoptic pattern) for severe rainfall processes over complex orography. For the two Ligurian events, this role has been analyzed through the available observations (e.g., Meteosat Second Generation, Moderate Resolution Imaging Spectroradiometer, the Italian Radar Network mosaic, and the Italian rain gauge network observations). The authors then address the possible role of sea–atmosphere interactions and propose a characterization of these events in terms of their predictability.
Exploring the \overflow tap\ theory: linking forest soil CO2 fluxes and individual mycorrhizosphere components to photosynthesis
Quantifying soil organic carbon stocks (SOC) and their dynamics accurately is crucial for better predictions of climate change feedbacks within the atmosphere-vegetation-soil system. However, the components, environmental responses and controls of the soil CO2 efflux (Rs ) are still unclear and limited by field data availability. The objectives of this study were (1) to quantify the contribution of the various Rs components, specifically its mycorrhizal component, (2) to determine their temporal variability, and (3) to establish their environmental responses and dependence on gross primary productivity (GPP). In a temperate deciduous oak forest in south east England hourly soil and ecosystem CO2 fluxes over four years were measured using automated soil chambers and eddy covariance techniques. Mesh-bag and steel collar soil chamber treatments prevented root or both root and mycorrhizal hyphal in-growth, respectively, to allow separation of heterotrophic (Rh ) and autotrophic (Ra ) soil CO2 fluxes and the Ra components, roots (Rr ) and mycorrhizal hyphae (Rm ). Annual cumulative Rs values were very similar between years (740 ± 43 g C m-2 yr-1 ) with an average flux of 2.0 ± 0.3 μmol CO2 m-2 s-1 , but Rs components varied. On average, annual Rr , Rm and Rh fluxes contributed 38, 18 and 44%, respectively, showing a large Ra contribution (56%) with a considerable Rm component varying seasonally. Soil temperature largely explained the daily variation of Rs (R2 = 0.81), mostly because of strong responses by Rh (R2 = 0.65) and less so for Rr (R2 = 0.41) and Rm (R2 = 0.18). Time series analysis revealed strong daily periodicities for Rs and Rr , whilst Rm was dominated by seasonal (~150 days), and Rh by annual periodicities. Wavelet coherence analysis revealed that Rr and Rm were related to short-term (daily) GPP changes, but for Rm there was a strong relationship with GPP over much longer (weekly to monthly) periods and notably during periods of low Rr . The need to include individual Rs components in C flux models is discussed, in particular, the need to represent the linkage between GPP and Ra components, in addition to temperature responses for each component. The potential consequences of these findings for understanding the limitations for long-term forest C sequestration are highlighted, as GPP via root-derived C including Rm seems to function as a C \"overflow tap\", with implications on the turnover of SOC.
Multi-decadal shoreline changes in Eastern Ghana—natural dynamics versus human interventions
Human infrastructures, such as dams, seawalls, and ports, can affect both the sedimentary budget and nearshore hydrodynamics, enhancing and accelerating the loss or gain of coastal sediments. Understanding the processes and factors controlling beach morphodynamics is essential for implementing adequate adaptation strategies in coastal areas, particularly in those regions where coastal protection measures are scarce. This study analyzes shoreline changes in the Keta Municipal District, located in southeastern Ghana (West Africa). This area is characterized by the sedimentary input of the Volta River, forming a river delta situated to the west, i.e., updrift, of our study site. Following the construction of two dams (Akosombo and Kpong) on the Volta River in 1965 and 1982, groins and revetments have been built along the coast between 2005 and 2015 to reduce the high rates of coastal erosion in this area. Here, we explore the influence of these dams and the hard protection constructions on beach morphodynamics using historical maps and satellite images complemented by a shoreline survey undertaken with a differential GNSS in 2015. The multi-decadal evolution between 1913 and 2015 reconstructed for 90 km of shoreline suggests that local erosion rates in the region predate the construction of the two dams on the Volta River, indicating that these structures might not be the primary driver of coastal erosion in this area, as previously suggested. We emphasize that delta dynamics under conditions of high-energy longshore drift, modified by anthropogenic drivers such as sand mining, play a key role in the long-term evolution of this coast. Our results also show that the infrastructures built to halt coastal erosion result in localized erosion and accretion down-current along the coastline towards the border with Togo, highlighting the need for a transnational perspective in addressing the problems caused by coastal erosion.
Coastal and marine geomorphology between Albenga and Savona(NW Mediterranean Sea, Italy)
In this paper, we present a map describing the main geomorphological features of the coastal and marine area between the towns of Albenga and Savona (Ligurian Sea, NW Mediterranean) corresponding to a coastal stretch of ∼40 km. To produce this map, we collated data from the literature, orthophotos, perspective photos, multibeam and side scan sonar data, and undertook direct surveys to ground truth data obtained using indirect techniques. We divided the information into nine thematic layers, including bathymetry, natural coastal types, geomorphological elements, seafloor coverage (both geological and biological), coastal and nearshore dynamics, human influence on coastal and marine environments, coastal occupation and protected areas.
On the Existence of a Weak Solution to a Two-Dimensional Free-Boundary Problem with a Nonlinear Flux Condition
The main result of this paper is a global existence theorem for a two-dimensional free-boundary problem with a nonlinear boundary condition in suitable Sobolev spaces. The existence result is proved by using some a priori estimates and the Schauder fixed point theorem.