Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
61 result(s) for "Casey, Kerry A."
Sort by:
Normalizing the environment recapitulates adult human immune traits in laboratory mice
The immune system of laboratory mice raised in an ultra-hygienic environment resembles that ofnewborn humans, but can be induced to resemble the immune system of adult humans or 'dirty' mice by co-housing with pet store-bought mice. Do 'dirty' mice make better immunological models? The laboratory mouse is by far the dominant model organism for in vivo immunological research which — particularly in the light of disappointing results obtained with some recent transfers of disease treatments from laboratory to clinic — raises the question of how accurately the model reflects the human immune system. These authors compare the immune status of laboratory mice with that of feral mice and with mice bought commercially as pets. They find that the immune system of the ubiquitous laboratory 'specific pathogen free' mouse approximates that of human neonates, rather than human adults. Co-housing laboratory mice with 'pet store' mice leads to maturation of the immune system, making it more similar to that of the human adult, and resulting in increased resistance in several models of infection. The use of such 'dirty' mice could supplement current models to either increase translational potential to human disease or to better inform the efficacy of preclinical prophylactic and therapeutic modalities. Our current understanding of immunology was largely defined in laboratory mice, partly because they are inbred and genetically homogeneous, can be genetically manipulated, allow kinetic tissue analyses to be carried out from the onset of disease, and permit the use of tractable disease models. Comparably reductionist experiments are neither technically nor ethically possible in humans. However, there is growing concern that laboratory mice do not reflect relevant aspects of the human immune system, which may account for failures to translate disease treatments from bench to bedside 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 . Laboratory mice live in abnormally hygienic specific pathogen free (SPF) barrier facilities. Here we show that standard laboratory mouse husbandry has profound effects on the immune system and that environmental changes produce mice with immune systems closer to those of adult humans. Laboratory mice—like newborn, but not adult, humans—lack effector-differentiated and mucosally distributed memory T cells. These cell populations were present in free-living barn populations of feral mice and pet store mice with diverse microbial experience, and were induced in laboratory mice after co-housing with pet store mice, suggesting that the environment is involved in the induction of these cells. Altering the living conditions of mice profoundly affected the cellular composition of the innate and adaptive immune systems, resulted in global changes in blood cell gene expression to patterns that more closely reflected the immune signatures of adult humans rather than neonates, altered resistance to infection, and influenced T-cell differentiation in response to a de novo viral infection. These data highlight the effects of environment on the basal immune state and response to infection and suggest that restoring physiological microbial exposure in laboratory mice could provide a relevant tool for modelling immunological events in free-living organisms, including humans.
Neutrophil and mononuclear leukocyte pathways and upstream regulators revealed by serum proteomics of adult and juvenile dermatomyositis
Objectives Serum protein abundance was assessed in adult and juvenile dermatomyositis (DM and JDM) patients to determine differentially regulated proteins, altered pathways, and candidate disease activity biomarkers. Methods Serum protein expression from 17 active adult DM and JDM patients each was compared to matched, healthy control subjects by a multiplex immunoassay. Pathway analysis and protein clustering of the differentially regulated proteins were examined to assess underlying mechanisms. Candidate disease activity biomarkers were identified by correlating protein expression with disease activity measures. Results Seventy-eight of 172 proteins were differentially expressed in the sera of DM and JDM patients compared to healthy controls. Forty-eight proteins were differentially expressed in DM, 32 proteins in JDM, and 14 proteins in both DM and JDM. Twelve additional differentially expressed proteins were identified after combining the DM and JDM cohorts. C-X-C motif chemokine ligand 10 (CXCL10) was the most strongly upregulated protein in both DM and JDM sera. Other highly upregulated proteins in DM included S100 calcium binding protein A12 (S100A12), CXCL9, and nicotinamide phosphoribosyltransferase (NAMPT), while highly upregulated proteins in JDM included matrix metallopeptidase 3 (MMP3), growth differentiation factor 15 (GDF15), and von Willebrand factor (vWF). Pathway analysis indicated that phosphoinositide 3-kinase (PI3K), p38 mitogen-activated protein kinase (MAPK), and toll-like receptor 7 (TLR7) signaling were activated in DM and JDM. Additional pathways specific to DM or JDM were identified. A protein cluster associated with neutrophils and mononuclear leukocytes and a cluster of interferon-associated proteins were observed in both DM and JDM. Twenty-two proteins in DM and 24 proteins in JDM sera correlated with global, muscle, and/or skin disease activity. Seven proteins correlated with disease activity measures in both DM and JDM sera. IL-1 receptor like 1 (IL1RL1) emerged as a candidate global disease activity biomarker in DM and JDM. Conclusion Coordinate analysis of protein expression in DM and JDM patient sera by a multiplex immunoassay validated previous gene expression studies and identified novel dysregulated proteins, altered signaling pathways, and candidate disease activity biomarkers. These findings may further inform the assessment of DM and JDM patients and aid in the identification of potential therapeutic targets.
Discovery and characterization of potent IL-21 neutralizing antibodies via a novel alternating antigen immunization and humanization strategy
Interleukin-21 (IL-21), a member of the common cytokine receptor γ chain (γc) family, is secreted by CD4+ T cells and natural killer T cells and induces effector function through interactions with the IL-21 receptor (IL-21R)/γc complex expressed on both immune and non-immune cells. Numerous studies suggest that IL-21 plays a significant role in autoimmune disorders. Therapeutic intervention to disrupt the IL-21/IL-21R/γc interaction and inhibit subsequent downstream signal transduction could offer a treatment paradigm for these diseases. Potent neutralizing antibodies reported in the literature were generated after extensive immunizations with human IL-21 alone and in combination with various adjuvants. To circumvent the laborious method of antibody generation while targeting a conserved functional epitope, we designed a novel alternating-antigen immunization strategy utilizing both human and cynomolgus monkey (cyno) IL-21. Despite the high degree of homology between human and cyno IL-21, our alternating-immunization strategy elicited higher antibody titers and more potent neutralizing hybridomas in mice than did the immunization with human IL-21 antigen alone. The lead hybridoma clone was humanized by grafting the murine complementarity-determining regions onto human germline framework templates, using a unique rational design. The final humanized and engineered antibody, MEDI7169, encodes only one murine residue at the variable heavy/light-chain interface, retains the sub-picomolar affinity for IL-21, specifically inhibits IL-21/IL-21R-mediated signaling events and is currently under clinical development as a potential therapeutic agent for autoimmune diseases. This study provides experimental evidence of the immune system's potential to recognize and respond to shared epitopes of antigens from distinct species, and presents a generally applicable, novel method for the rapid generation of exceptional therapeutic antibodies using the hybridoma platform.
Low-density granulocytes activate T cells and demonstrate a non-suppressive role in systemic lupus erythematosus
ObjectivesThe presence of proinflammatory low-density granulocytes (LDG) has been demonstrated in autoimmune and infectious diseases. Recently, regulatory neutrophilic polymorphonuclear myeloid-derived suppressor cells (PMN-MDSC) were identified in systemic lupus erythematosus (SLE). Because LDG and PMN-MDSC share a similar phenotype with contrasting functional effects, we explored these cells in a cohort of patients with SLE.MethodsLDG and normal-density granulocytes (NDG) were isolated from fresh blood of healthy donors (HD) and patients with SLE. Associations between LDG and clinical manifestations were analysed. Multicolor flow cytometry and confocal imaging were performed to immunophenotype the cells. The ability of LDG and NDG to suppress T cell function and induce cytokine production was quantified.ResultsLDG prevalence was elevated in SLE versus HD, associated with the interferon (IFN) 21-gene signature and disease activity. Also, the LDG-to-lymphocyte ratio associated better with SLE disease activity index than neutrophil-to-lymphocyte ratio. SLE LDG exhibited significantly heightened surface expression of various activation markers and also of lectin-like oxidised low-density lipoprotein receptor-1, previously described to be associated with PMN-MDSC. Supernatants from SLE LDG did not restrict HD CD4+ T cell proliferation in an arginase-dependent manner, suggesting LDG are not immunosuppressive. SLE LDG supernatants induced proinflammatory cytokine production (IFN gamma, tumour necrosis factor alpha and lymphotoxin alpha) from CD4+ T cells.ConclusionsBased on our results, SLE LDG display an activated phenotype, exert proinflammatory effects on T cells and do not exhibit MDSC function. These results support the concept that LDG represent a distinct proinflammatory subset in SLE with pathogenic potential, at least in part, through their ability to activate type 1 helper responses.
Memory CD8 T-cell compartment grows in size with immunological experience
Gaining from the experience Repeated exposure to pathogens and the generation of memory CD8 + T cells tasked to kill that pathogen is thought to result in attrition of the pre-existing memory T cell pool to keep the overall size of the memory compartment constant. But new work in mice shows that the size of the memory CD8 + T-cell compartment increases after immunization, and that the generation of new memory CD8 + T cells does not significantly reduce the number of pre-existing memory CD8 + T cells. The discovery that the number of CD8 + T-cell cells in the mammalian host can adapt according to immunological experience could be important for the production of vaccines, since it may be possible to induce specific immune responses that require a high frequency of CD8 + T cells without impairing pre-existing immunities to other infections. Repeated exposure to pathogens and generation of T-cell memory is thought to result in attrition of the pre-existing memory T cell pool to maintain the overall size of the memory compartment constant. This work shows that new effector memory cells can be generated in large numbers without greatly impacting pre-existing memory. Memory CD8 T cells, generated by natural pathogen exposure or intentional vaccination, protect the host against specific viral infections 1 . It has long been proposed that the number of memory CD8 T cells in the host is inflexible, and that individual cells are constantly competing for limited space 2 , 3 . Consequently, vaccines that introduce over-abundant quantities of memory CD8 T cells specific for an agent of interest could have catastrophic consequences for the host by displacing memory CD8 T cells specific for all previous infections 4 , 5 , 6 . To test this paradigm, we developed a vaccination regimen in mice that introduced as many new long-lived memory CD8 T cells specific for a single vaccine antigen as there were memory CD8 T cells in the host before vaccination. Here we show that, in contrast to expectations, the size of the memory CD8 T-cell compartment doubled to accommodate these new cells, a change due solely to the addition of effector memory CD8 T cells. This increase did not affect the number of CD4 T cells, B cells or naive CD8 T cells, and pre-existing memory CD8 T cells specific for a previously encountered infection were largely preserved. Thus, the number of effector memory CD8 T cells in the mammalian host adapts according to immunological experience. Developing vaccines that abundantly introduce new memory CD8 T cells should not necessarily ablate pre-existing immunity to other infections.
Self-reactive IgE exacerbates interferon responses associated with autoimmunity
A hallmark of systemic lupus erythematosus is the production of type I interferons in response to immunocomplexes containing self DNA from dead cells and DNA-specific IgG. Sanjuan and colleagues find that IgE specific for self DNA also exacerbates this disease. Canonically, immunoglobulin E (IgE) mediates allergic immune responses by triggering mast cells and basophils to release histamine and type 2 helper cytokines. Here we found that in human systemic lupus erythematosus (SLE), IgE antibodies specific for double-stranded DNA (dsDNA) activated plasmacytoid dendritic cells (pDCs), a type of cell of the immune system linked to viral defense, which led to the secretion of substantial amounts of interferon-α (IFN-α). The concentration of dsDNA-specific IgE found in patient serum correlated with disease severity and greatly potentiated pDC function by triggering phagocytosis via the high-affinity FcɛRI receptor for IgE, followed by Toll-like receptor 9 (TLR9)-mediated sensing of DNA in phagosomes. Our findings expand the known pathogenic mechanisms of IgE-mediated inflammation beyond those found in allergy and demonstrate that IgE can trigger interferon responses capable of exacerbating self-destructive autoimmune responses.
SLE Plasma Profiling Identifies Unique Signatures of Lupus Nephritis and Discoid Lupus
Systemic lupus erythematosus (SLE) impacts multiple organ systems, although the causes of many individual SLE pathologies are poorly understood. This study was designed to elucidate organ-specific inflammation by identifying proteins that correlate with SLE organ involvement and to evaluate established biomarkers of disease activity across a diverse patient cohort. Plasma proteins and autoantibodies were measured across seven SLE manifestations. Comparative analyses between pathologies and correlation with the SLE Disease Activity Index (SLEDAI) were used to identify proteins associated with organ-specific and composite disease activity. Established biomarkers of composite disease activity, SLE-associated antibodies, type I interferon (IFN), and complement C3, correlated with composite SLEDAI, but did not significantly associate with many individual SLE pathologies. Two clusters of proteins were associated with renal disease in lupus nephritis samples. One cluster included markers of infiltrating leukocytes and the second cluster included markers of tissue remodelling. In patients with discoid lupus, a distinct signature consisting of elevated immunoglobulin A autoantibodies and interleukin-23 was observed. Our findings indicate that proteins from blood samples can be used to identify protein signatures that are distinct from established SLE biomarkers and SLEDAI and could be used to conveniently monitor multiple inflammatory pathways present in different organ systems.
Type I interferon receptor blockade with anifrolumab corrects innate and adaptive immune perturbations of SLE
ObjectiveAnifrolumab is a fully human immunoglobulin G1 κ monoclonal antibody specific for subunit 1 of the type I interferon (IFN) α receptor. In a phase IIb study of adults with moderate to severe SLE, anifrolumab treatment demonstrated substantial reductions in multiple clinical endpoints. Here, we evaluated serum proteins and immune cells associated with SLE pathogenesis, type I interferon gene signature (IFNGS) test status and disease activity, and how anifrolumab affected these components.MethodsWhole blood samples were collected from patients enrolled in MUSE (NCT01438489) for serum protein and cellular assessments at baseline and subsequent time points. Data were parsed by IFNGS test status (high/low) and disease activity. Protein expression and immune cell subsets were measured using multiplex immunoassay and flow cytometry, respectively. Blood samples from healthy donors were analysed for comparison.ResultsBaseline protein expression differed between patients with SLE and healthy donors, IFNGS test-high and -low patients, and patients with moderate and severe disease. Anifrolumab treatment lowered concentrations of IFN-induced chemokines associated with B, T and other immune cell migration in addition to proteins associated with endothelial activation that were dysregulated at baseline. IFNGS test-high patients and those with high disease activity were characterised by low baseline numbers of lymphocytes, circulating memory T-cell subsets and neutrophils. Anifrolumab treatment reversed lymphopenia and neutropenia in the total population, and normalised multiple T-cell subset counts in IFNGS test-high patients compared with placebo.ConclusionsAnifrolumab treatment reversed IFN-associated changes at the protein and cellular level, indicating multiple modes of activity.Trial registration number NCT01438489.
Using the circulating proteome to assess type I interferon activity in systemic lupus erythematosus
Type I interferon (IFN) drives pathology in systemic lupus erythematosus (SLE) and can be tracked via IFN-inducible transcripts in blood. Here, we examined whether measurement of circulating proteins, which enter the bloodstream from inflamed tissues, also offers insight into global IFN activity. Using a novel protocol we generated 1,132 aptamer-based protein measurements from anti-dsDNA pos SLE blood samples and derived an IFN protein signature (IFNPS) that approximates the IFN 21-gene signature (IFNGS). Of 82 patients with SLE, IFNPS was elevated for 89% of IFNGS-high patients (49/55) and 26% of IFNGS-low patients (7/27). IFNGS-high/IFNPS-high patients exhibited activated NK, CD4, and CD8 T cells, while IFNPS-high only patients did not. IFNPS correlated with global disease activity in lymphopenic and non-lymphopenic patients and decreased following type I IFN neutralisation with anifrolumab in the SLE phase IIb study, MUSE. In summary, we developed a protein signature that reflects IFNGS and identifies a new subset of patients with SLE who have IFN activity.