Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
31 result(s) for "Casey, Pat G."
Sort by:
Autochthonous faecal viral transfer (FVT) impacts the murine microbiome after antibiotic perturbation
Background It has become increasingly accepted that establishing and maintaining a complex and diverse gut microbiota is fundamental to human health. There are growing efforts to identify means of modulating and influencing the microbiota, especially in individuals who have experienced a disruption in their native microbiota. Faecal microbiota transplantation (FMT) is one method that restores diversity to the microbiota of an individual by introducing microbes from a healthy donor. FMT introduces the total microbial load into the recipient, including the bacteria, archaea, yeasts, protists and viruses. In this study, we investigated whether an autochthonous faecal viral transfer (FVT), in the form of a sterile faecal filtrate, could impact the recovery of a bacteriome disrupted by antibiotic treatment. Results Following antibiotic disruption of the bacteriome, test mice received an FVT harvested prior to antibiotic treatment, while control mice received a heat- and nuclease-treated FVT. In both groups of mice, the perturbed microbiome reverted over time to one more similar to the pre-treatment one. However, the bacteriomes of mice that received an FVT, in which bacteriophages predominate, separated from those of the control mice as determined by principal co-ordinate analysis (PCoA). Moreover, analysis of the differentially abundant taxa indicated a closer resemblance to the pre-treatment bacteriome in the test mice that had received an FVT. Similarly, metagenomic sequencing of the virome confirmed that faecal bacteriophages of FVT and control mice differed over time in both abundance and diversity, with the phages constituting the FVT persisting in mice that received them. Conclusions An autochthonous virome transfer reshaped the bacteriomes of mice post-antibiotic treatment such that they more closely resembled the pre-antibiotic microbiota profile compared to mice that received non-viable phages. Thus, FVT may have a role in addressing antibiotic-associated microbiota alterations and potentially prevent the establishment of post-antibiotic infection. Given that bacteriophages are biologically inert in the absence of their host bacteria, they could form a safe and effective alternative to whole microbiota transplants that could be delivered during/following perturbation of the gut flora.
Autoinducer-2 Plays a Crucial Role in Gut Colonization and Probiotic Functionality of Bifidobacterium breve UCC2003
In the present study we show that luxS of Bifidobacterium breve UCC2003 is involved in the production of the interspecies signaling molecule autoinducer-2 (AI-2), and that this gene is essential for gastrointestinal colonization of a murine host, while it is also involved in providing protection against Salmonella infection in Caenorhabditis elegans. We demonstrate that a B. breve luxS-insertion mutant is significantly more susceptible to iron chelators than the WT strain and that this sensitivity can be partially reverted in the presence of the AI-2 precursor DPD. Furthermore, we show that several genes of an iron starvation-induced gene cluster, which are downregulated in the luxS-insertion mutant and which encodes a presumed iron-uptake system, are transcriptionally upregulated under in vivo conditions. Mutation of two genes of this cluster in B. breve UCC2003 renders the derived mutant strains sensitive to iron chelators while deficient in their ability to confer gut pathogen protection to Salmonella-infected nematodes. Since a functional luxS gene is present in all tested members of the genus Bifidobacterium, we conclude that bifidobacteria operate a LuxS-mediated system for gut colonization and pathogen protection that is correlated with iron acquisition.
Bacteriophages ϕMR299-2 and ϕNH-4 Can Eliminate Pseudomonas aeruginosa in the Murine Lung and on Cystic Fibrosis Lung Airway Cells
Pseudomonas aeruginosa is a common cause of infection in the lungs of patients with cystic fibrosis (CF). In addition, biofilm formation and antibiotic resistance of Pseudomonas are major problems that can complicate antibiotic therapy. We evaluated the efficacy of using bacteriophages to kill the pathogen in both biofilms and in the murine lung. We isolated and characterized two phages from a local wastewater treatment plant, a myovirus (ϕNH-4) and a podovirus (ϕMR299-2). Both phages were active against clinical isolates of P. aeruginosa . Together, the two phages killed all 9 clinical isolate strains tested, including both mucoid and nonmucoid strains. An equal mixture of the two phages was effective in killing P. aeruginosa NH57388A (mucoid) and P. aeruginosa MR299 (nonmucoid) strains when growing as a biofilm on a cystic fibrosis bronchial epithelial CFBE41o- cell line. Phage titers increased almost 100-fold over a 24-h period, confirming replication of the phage. Furthermore, the phage mix was also effective in killing the pathogen in murine lungs containing 1 × 10 7 to 2 × 10 7 P. aeruginosa . Pseudomonas was effectively cleared (reduced by a magnitude of at least 3 to 4 log units) from murine lungs in 6 h. Our study demonstrates the efficacy of these two phages in killing clinical Pseudomonas isolates in the murine lung or as a biofilm on a pulmonary cell line and supports the growing interest in using phage therapy for the control and treatment of multidrug-resistant Pseudomonas lung infections in CF patients. IMPORTANCE Given the rise in antibiotic resistance, nonantibiotic therapies are required for the treatment of infection. This is particularly true for the treatment of Pseudomonas infection in patients with cystic fibrosis. We have identified two bacterial viruses (bacteriophages) that can kill Pseudomonas growing on human lung cells and in an animal model of lung infection. The use of bacteriophages is particularly appropriate because the killing agent can replicate on the target cell, generating fresh copies of the bacteriophage. Thus, in the presence of a target, the killing agent multiplies. By using two bacteriophages we can reduce the risk of resistant colonies developing at the site of infection. Bacteriophage therapy is an exciting field, and this study represents an important demonstration of efficacy in validated infection models. Given the rise in antibiotic resistance, nonantibiotic therapies are required for the treatment of infection. This is particularly true for the treatment of Pseudomonas infection in patients with cystic fibrosis. We have identified two bacterial viruses (bacteriophages) that can kill Pseudomonas growing on human lung cells and in an animal model of lung infection. The use of bacteriophages is particularly appropriate because the killing agent can replicate on the target cell, generating fresh copies of the bacteriophage. Thus, in the presence of a target, the killing agent multiplies. By using two bacteriophages we can reduce the risk of resistant colonies developing at the site of infection. Bacteriophage therapy is an exciting field, and this study represents an important demonstration of efficacy in validated infection models.
Short-term consumption of a high-fat diet increases host susceptibility to Listeria monocytogenes infection
Background A westernized diet comprising a high caloric intake from animal fats is known to influence the development of pathological inflammatory conditions. However, there has been relatively little focus upon the implications of such diets for the progression of infectious disease. Here, we investigated the influence of a high-fat (HF) diet upon parameters that influence Listeria monocytogenes infection in mice. Results We determined that short-term administration of a HF diet increases the number of goblet cells, a known binding site for the pathogen, in the gut and also induces profound changes to the microbiota and promotes a pro-inflammatory gene expression profile in the host. Host physiological changes were concordant with significantly increased susceptibility to oral L. monocytogenes infection in mice fed a HF diet relative to low fat (LF)- or chow-fed animals. Prior to Listeria infection, short-term consumption of HF diet elevated levels of Firmicutes including Coprococcus , Butyricicoccus , Turicibacter and Clostridium XIVa species. During active infection with L. monocytogenes , microbiota changes were further exaggerated but host inflammatory responses were significantly downregulated relative to Listeria -infected LF- or chow-fed groups, suggestive of a profound tempering of the host response influenced by infection in the context of a HF diet. The effects of diet were seen beyond the gut, as a HF diet also increased the sensitivity of mice to systemic infection and altered gene expression profiles in the liver. Conclusions We adopted a systems approach to identify the effects of HF diet upon L. monocytogenes infection through analysis of host responses and microbiota changes (both pre- and post-infection). Overall, the results indicate that short-term consumption of a westernized diet has the capacity to significantly alter host susceptibility to L. monocytogenes infection concomitant with changes to the host physiological landscape. The findings suggest that diet should be a consideration when developing models that reflect human infectious disease.
Listeriolysin S, a Novel Peptide Haemolysin Associated with a Subset of Lineage I Listeria monocytogenes
Streptolysin S (SLS) is a bacteriocin-like haemolytic and cytotoxic virulence factor that plays a key role in the virulence of Group A Streptococcus (GAS), the causative agent of pharyngitis, impetigo, necrotizing fasciitis and streptococcal toxic shock syndrome. Although it has long been thought that SLS and related peptides are produced by GAS and related streptococci only, there is evidence to suggest that a number of the most notorious Gram-positive pathogenic bacteria, including Listeria monocytogenes, Clostridium botulinum and Staphylococcus aureus, produce related peptides. The distribution of the L. monocytogenes cluster is particularly noteworthy in that it is found exclusively among a subset of lineage I strains; i.e., those responsible for the majority of outbreaks of listeriosis. Expression of these genes results in the production of a haemolytic and cytotoxic factor, designated Listeriolysin S, which contributes to virulence of the pathogen as assessed by murine- and human polymorphonuclear neutrophil-based studies. Thus, in the process of establishing the existence of an extended family of SLS-like modified virulence peptides (MVPs), the genetic basis for the enhanced virulence of a proportion of lineage I L. monocytogenes may have been revealed.
Divergent Evolution of the Activity and Regulation of the Glutamate Decarboxylase Systems in Listeria monocytogenes EGD-e and 10403S: Roles in Virulence and Acid Tolerance
The glutamate decarboxylase (GAD) system has been shown to be important for the survival of Listeria monocytogenes in low pH environments. The bacterium can use this faculty to maintain pH homeostasis under acidic conditions. The accepted model for the GAD system proposes that the antiport of glutamate into the bacterial cell in exchange for γ-aminobutyric acid (GABA) is coupled to an intracellular decarboxylation reaction of glutamate into GABA that consumes protons and therefore facilitates pH homeostasis. Most strains of L. monocytogenes possess three decarboxylase genes (gadD1, D2 & D3) and two antiporter genes (gadT1 & gadT2). Here, we confirm that the gadD3 encodes a glutamate decarboxylase dedicated to the intracellular GAD system (GADi), which produces GABA from cytoplasmic glutamate in the absence of antiport activity. We also compare the functionality of the GAD system between two commonly studied reference strains, EGD-e and 10403S with differences in terms of acid resistance. Through functional genomics we show that EGD-e is unable to export GABA and relies exclusively in the GADi system, which is driven primarily by GadD3 in this strain. In contrast 10403S relies upon GadD2 to maintain both an intracellular and extracellular GAD system (GADi/GADe). Through experiments with a murinised variant of EGD-e (EGDm) in mice, we found that the GAD system plays a significant role in the overall virulence of this strain. Double mutants lacking either gadD1D3 or gadD2D3 of the GAD system displayed reduced acid tolerance and were significantly affected in their ability to cause infection following oral inoculation. Since EGDm exploits GADi but not GADe the results indicate that the GADi system makes a contribution to virulence within the mouse. Furthermore, we also provide evidence that there might be a separate line of evolution in the GAD system between two commonly used reference strains.
A Putative P-Type ATPase Required for Virulence and Resistance to Haem Toxicity in Listeria monocytogenes
Regulation of iron homeostasis in many pathogens is principally mediated by the ferric uptake regulator, Fur. Since acquisition of iron from the host is essential for the intracellular pathogen Listeria monocytogenes, we predicted the existence of Fur-regulated systems that support infection. We examined the contribution of nine Fur-regulated loci to the pathogenicity of L. monocytogenes in a murine model of infection. While mutating the majority of the genes failed to affect virulence, three mutants exhibited a significantly compromised virulence potential. Most striking was the role of the membrane protein we designate FrvA (Fur regulated virulence factor A; encoded by frvA [lmo0641]), which is absolutely required for the systemic phase of infection in mice and also for virulence in an alternative infection model, the Wax Moth Galleria mellonella. Further analysis of the ΔfrvA mutant revealed poor growth in iron deficient media and inhibition of growth by micromolar concentrations of haem or haemoglobin, a phenotype which may contribute to the attenuated growth of this mutant during infection. Uptake studies indicated that the ΔfrvA mutant is unaffected in the uptake of ferric citrate but demonstrates a significant increase in uptake of haem and haemin. The data suggest a potential role for FrvA as a haem exporter that functions, at least in part, to protect the cell against the potential toxicity of free haem.
A Mariner Transposon-Based Signature-Tagged Mutagenesis System for the Analysis of Oral Infection by Listeria monocytogenes
Listeria monocytogenes is a Gram-positive foodborne pathogen and the causative agent of listerosis a disease that manifests predominately as meningitis in the non-pregnant individual or infection of the fetus and spontaneous abortion in pregnant women. Common-source outbreaks of foodborne listeriosis are associated with significant morbidity and mortality. However, relatively little is known concerning the mechanisms that govern infection via the oral route. In order to aid functional genetic analysis of the gastrointestinal phase of infection we designed a novel signature-tagged mutagenesis (STM) system based upon the invasive L. monocytogenes 4b serotype H7858 strain. To overcome the limitations of gastrointestinal infection by L. monocytogenes in the mouse model we created a H7858 strain that is genetically optimised for oral infection in mice. Furthermore our STM system was based upon a mariner transposon to favour numerous and random transposition events throughout the L. monocytogenes genome. Use of the STM bank to investigate oral infection by L. monocytogenes identified 21 insertion mutants that demonstrated significantly reduced potential for infection in our model. The sites of transposon insertion included lmOh7858_0671 (encoding an internalin homologous to Lmo0610), lmOh7858_0898 (encoding a putative surface-expressed LPXTG protein homologous to Lmo0842), lmOh7858_2579 (encoding the HupDGC hemin transport system) and lmOh7858_0399 (encoding a putative fructose specific phosphotransferase system). We propose that this represents an optimised STM system for functional genetic analysis of foodborne/oral infection by L. monocytogenes.
Directed evolution and targeted mutagenesis to murinize listeria monocytogenes internalin A for enhanced infectivity in the murine oral infection model
Background Internalin A (InlA) is a critical virulence factor which mediates the initiation of Listeria monocytogenes infection by the oral route in permissive hosts. The interaction of InlA with the host cell ligand E-cadherin efficiently stimulates L. monocytogenes entry into human enterocytes, but has only a limited interaction with murine cells. Results We have created a surface display library of randomly mutated InlA in a non-invasive heterologous host Lactococcus lactis in order to create and screen novel variants of this invasion factor. After sequential passage through a murine cell line (CT-26), multiple clones with enhanced invasion characteristics were identified. Competitive index experiments were conducted in mice using selected mutations introduced into L. monocytogenes EGD-e background. A novel single amino acid change was identified which enhanced virulence by the oral route in the murine model and will form the basis of further engineering approaches. As a control a previously described EGD-InlA m murinized strain was also re-created as part of this study with minor modifications and designated EGD-e InlA m * . The strain was created using a procedure that minimizes the likelihood of secondary mutations and incorporates Listeria -optimized codons encoding the altered amino acids. L. monocytogenes EGD-e InlA m * yielded consistently higher level murine infections by the oral route when compared to EGD-e, but did not display the two-fold increased invasion into a human cell line that was previously described for the EGD-InlA m strain. Conclusions We have used both site-directed mutagenesis and directed evolution to create variants of InlA which may inform future structure-function analyses of this protein. During the course of the study we engineered a murinized strain of L. monocytogenes EGD-e which shows reproducibly higher infectivity in the intragastric murine infection model than the wild type, but does not display enhanced entry into human cells as previously observed. This murinized L. monocytogenes strain will provide a useful tool for the analysis of the gastrointestinal phase of listeriosis.
The Lantibiotic Lacticin 3147 Prevents Systemic Spread of Staphylococcus aureus in a Murine Infection Model
The objective of this study was to investigate the in vivo activity of the lantibiotic lacticin 3147 against the luminescent Staphylococcus aureus strain Xen 29 using a murine model. Female BALB/c mice (7 weeks old, 17 g) were divided into groups (n=5) and infected with the Xen 29 strain via the intraperitoneal route at a dose of 1×106 cfu/animal. After 1.5 hr, the animals were treated subcutaneously with doses of phosphate-buffered saline (PBS; negative control) or lacticin 3147. Luminescent imaging was carried 3 and 5 hours postinfection. Mice were then sacrificed, and the levels of S. aureus Xen 29 in the liver, spleen, and kidneys were quantified. Notably, photoluminescence and culture-based analysis both revealed that lacticin 3147 successfully controlled the systemic spread of S. aureus in mice thus indicating that lacticin 3147 has potential as a chemotherapeutic agent for in vivo applications.