Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
7 result(s) for "Caspersen, J.P"
Sort by:
Tree mortality following partial harvests is determined by skidding proximity
Recently developed structural retention harvesting strategies aim to improve habitat and ecological services provided by managed forest stands by better emulating natural disturbances. The potential for elevated mortality of residual trees following such harvests remains a critical concern for forest managers, and may present a barrier to more widespread implementation of the approach. We used a harvest chronosequence combined with dendrochronological techniques and an individual-based neighborhood analysis to examine the rate and time course of residual-tree mortality in the first decade following operational partial \"structural retention\" harvests in the boreal forest of Ontario, Canada. In the first year after harvest, residual-tree mortality peaked at 12.6 times the preharvest rate. Subsequently, mortality declined rapidly and approached preharvest levels within 10 years. Proximity to skid trails was the most important predictor both of windthrow and standing death, which contributed roughly equally to total postharvest mortality. Local exposure further increased windthrow risk, while crowding enhanced the risk of standing mortality. Ten years after harvest, an average of 10.5% of residual trees had died as a result of elevated postharvest mortality. Predicted cumulative elevated mortality in the first decade after harvest ranged from 2.4% to 37% of residual trees across the observed gradient of skid trail proximity, indicating that postharvest mortality will remain at or below acceptable rates only if skidding impacts are minimized. These results represent an important step toward understanding how elevated mortality may influence stand dynamics and habitat supply following moderate-severity disturbances such as partial harvests, insect outbreaks, and windstorms.
Seedling recruitment in a northern temperate forest: the relative importance of supply and establishment limitation
We quantified supply and establishment limitation as components of seedling recruitment for five species common to the temperate forests of central Ontario. Establishment limitation was the primary cause of recruitment failure for the three most common species: Acer saccharum Marsh., Betula alleghaniensis Britt., and Tsuga canadensis (L.) Carriere. The main barrier to establishment (including germination and seedling emergence) was a lack of suitable substrates, rather than a lack of light. Supply limitation, on the other hand, was the primary cause of recruitment failure for two less common species, Abies balsamea (L.) Mill. and Fagus grandifolia Ehrh. The cause of supply limitation was a lack of parent trees, in the case of A. balsamea, and low fecundity, in the case of F. grandifolia. Our results suggest that niche differences (i.e., germination requirements) are more important than dispersal in structuring temperate forest communities. Our results also suggest that availability of suitable substrates is the primary factor limiting seedling recruitment following logging.
Elevated mortality of residual trees following single-tree felling in northern hardwood forests
In this paper, I examine tree mortality in northern hardwood forests subjected to single-tree felling. Mortality risk was estimated as a function of growth prior to harvest and time since harvest. This allowed me to separately quantify mortality due to (1) natural processes, (2) intentional felling, and (3) stress and (or) felling damage (postcut mortality). The long-term rate of mortality due to natural causes was 1.5% per year. The intentional felling of trees increased the average mortality to 3.1%, and postcut mortality of residual trees increased the average an additional 0.2%-3.3% (the latter reflects both the direct negative effects of harvesting and the indirect positive effect of releasing residual trees from suppression). Thus, from a population-level perspective, the increased mortality caused by stress and (or) felling damage to residual trees was small compared to that caused by both natural mortality and tree felling. However, the long-term population average obscures more dramatic (though transient) effects of felling on small trees (DBH <10 cm), for which mortality rates increased by as much as 5% immediately after felling. This increase is several times greater than the natural mortality rate for small trees and may therefore have a substantial impact on stand structure and community dynamics.
Consistent land- and atmosphere-based U.S. carbon sink estimates
For the period 1980–89, we estimate a carbon sink in the coterminous United States between 0.30 and 0.58 petagrams of carbon per year (petagrams of carbon = 1015 grams of carbon). The net carbon flux from the atmosphere to the land was higher, 0.37 to 0.71 petagrams of carbon per year, because a net flux of 0.07 to 0.13 petagrams of carbon per year was exported by rivers and commerce and returned to the atmosphere elsewhere. These land-based estimates are larger than those from previous studies (0.08 to 0.35 petagrams of carbon per year) because of the inclusion of additional processes and revised estimates of some component fluxes. Although component estimates are uncertain, about one-half of the total is outside the forest sector. We also estimated the sink using atmospheric models and the atmospheric concentration of carbon dioxide (the tracer-transport inversion method). The range of results from the atmosphere-based inversions contains the land-based estimates. Atmosphere- and land-based estimates are thus consistent, within the large ranges of uncertainty for both methods. Atmosphere-based results for 1980–89 are similar to those for 1985–89 and 1990–94, indicating a relatively stable U.S. sink throughout the period.
Interspecific variation in sapling mortality in relation to growth and soil moisture
To examine the causes of landscape variation in forest community composition, we have quantified sapling mortality as a function of growth and soil moisture for seven dominant species in transition oak-northern hardwood forests of the northeastern USA. We located saplings in sites that encompassed a wide range of variation in soil moisture and light availability. In mesic conditions, the probability of mortality decays rapidly with increasing growth among shade tolerant species and more gradually among shade intolerant species: the rank order of survivorship at low growth rates is Tsuga canadensis > Fagus grandifolia > Acer saccharum > Fraxinus americana > Acer rubrum > Quercus rubra > Pinus strobus. The relationship between probability of mortality and growth does not vary with soil moisture among species insensitive to drought: Tsuga canadensis, Quercus rubra, and Pinus strobus. However, probability of mortality increases substantially with decreasing soil water availability for the other four species. Acer saccharum and Fagus grandifolia have high mortality rates under xeric conditions even when their growth is not suppressed. Acer rubrum and Fraxinus americana exhibited a steady but more gradual increase in the probability of mortality with decreasing soil moisture. Among the five deciduous hardwood species we examined there is a weak inverse relationship between the ability to survive growth suppression, a measure of shade tolerance, and the ability to survive in xeric conditions, a measure of drought tolerance. Tsuga canadensis, however, is tolerant of growth suppression and exhibits high survivorship in xeric conditions, while Pinus strobus is intolerant of growth suppression but insensitive to soil moisture. Species differences in water-dependent mortality are consistent with the species distributions across landscape gradients of soil water availability.
Spatial ecology of mating success in a sexually polymorphic plant
The spatial context of reproduction is of crucial importance to plants because of their sessile habit. Since pollen and seed dispersal is often restricted, mating success is likely to depend on the quantity and quality of mates in local neighbourhoods. Here we use neighbourhood models to investigate the spatial ecology of pollination and mating in Narcissus assoanus, a sexually polymorphic plant with two mating morphs that differ in style length. By mapping individuals in eight populations from southwestern France, we investigated the influence of the density and morph identity of plants at different spatial scales on variation in female fertility. By using inferences on the expected patterns of pollen transfer based on floral morphology, we were able to predict the quantitative relations between local morph ratios and variation in fertility. Our analyses revealed differences in the spatial clustering of morphs and in their response to plant density and morph identity within local neighbourhoods. Mating success in N. assoanus was characterized by both density- and frequency-dependent processes, a condition that may be a general feature of the spatial ecology of plant mating.
Large Ontogenetic Declines in Intra-crown Leaf Area Index in Two Temperate Deciduous Tree Species
The widespread occurrence of age-related changes in leaf morphology and allocation suggests that the leaf area index of individual trees (intra-crown LAI) may decline late in ontogeny. We used direct, within-canopy measurements to quantify the LAI of canopy trees with exposed crowns of two temperate deciduous species. Intra-crown LAI declined from ∼7 to 4 in Acer saccharum, and from ∼9.5 to 6.5 in Betula alleghaniensis, as tree size increased (from 15 to 72 cm diameter at breast height [dbh]). For A. saccharum, age (which varied from 30 to 160 years) was a significantly better predictor of LAI decline than dbh. We also modeled the effect of ontogenetic declines in LAI on understory light availability and found that light transmission increases significantly as canopy trees grow and mature. Our results thus suggest that gradual declines in LAI with tree age may play an important and overlooked role in contributing to the heterogeneity of sub-canopy light regimes in mature forests.