Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
315
result(s) for
"Castander, F J"
Sort by:
A gravitationally lensed quasar with quadruple images separated by 14.62 arcseconds
by
Richards, Gordon T.
,
Gunn, James E.
,
Johnston, David E.
in
Astronomy
,
Characteristics and properties of external galaxies and extragalactic objects
,
Dark matter (stellar, interstellar, galactic, and cosmological)
2003
Gravitational lensing is a powerful tool for the study of the distribution of dark matter in the Universe. The cold-dark-matter model of the formation of large-scale structures (that is, clusters of galaxies and even larger assemblies) predicts
1
,
2
,
3
,
4
,
5
,
6
the existence of quasars gravitationally lensed by concentrations of dark matter
7
so massive that the quasar images would be split by over 7 arcsec. Numerous searches
8
,
9
,
10
,
11
for large-separation lensed quasars have, however, been unsuccessful. All of the roughly 70 lensed quasars known
12
, including the first lensed quasar discovered
13
, have smaller separations that can be explained in terms of galaxy-scale concentrations of baryonic matter. Although gravitationally lensed galaxies
14
with large separations are known, quasars are more useful cosmological probes because of the simplicity of the resulting lens systems. Here we report the discovery of a lensed quasar, SDSS J1004 + 4112, which has a maximum separation between the components of 14.62 arcsec. Such a large separation means that the lensing object must be dominated by dark matter. Our results are fully consistent with theoretical expectations
3
,
4
,
5
based on the cold-dark-matter model.
Journal Article
The Sloan Digital Sky Survey
1998
The Sloan Digital Sky Survey (SDSS) is going to carry out a uniform survey of π steradians of the sky in the Northern Galactic cap and ∼ 225 deg2 in the Southern Hemisphere. The survey consists of a photometric and a spectroscopic survey. The SDSS will generate accurate photometry in five bands of approximately tens of millions of galaxies, tens of millions of stars and roughly a million quasars. It will also take spectra and measure redshifts of approximately a million galaxies and ten thousand quasars.The main characteristics and components of the survey are a dedicated 2.5m telescope, wide field correctors for photometry and spectroscopy that will provide a field of view of ∼ 3 degrees, a photometric camera with 30 photometric and 22 astrometric CCDs, and two fibre-fed spectrographs of 320 fibres each. The survey will produce a publicly available science database of Terabytes dimensions.
Journal Article
The PAU Survey: Classifying low-z SEDs using Machine Learning clustering
2023
We present an application of unsupervised Machine Learning Clustering to the PAU Survey of galaxy spectral energy distribution (SED) within the COSMOS field. The clustering algorithm is implemented and optimized to get the relevant groups in the data SEDs. We find 12 groups from a total number of 5,234 targets in the survey at \\(0.01 <\\) z \\(< 0.28\\). Among the groups, 3,545 galaxies (68\\%) show emission lines in the SEDs. These groups also include 1,689 old galaxies with no active star formation. We have fitted the SED to every single galaxy in each group with CIGALE. The mass, age and specific star formation rates (sSFR) of the galaxies range from \\(0.15 <\\) age/Gyr \\(< 11\\); \\(6 <\\) log (M\\(_{\\star}\\)/M\\(_{\\odot}\\)) \\(< 11.26\\), and \\(-14.67 <\\) log (sSFR/yr \\(^{-1}\\)) \\(< -8\\). The groups are well defined in their properties with galaxies having clear emission lines also having lower mass, are younger and have higher sSFR than those with elliptical like patterns. The characteristic values of galaxies showing clear emission lines are in agreement with the literature for starburst galaxies in COSMOS and GOODS-N fields at low redshift. The star-forming main sequence, sSFR vs. stellar mass and UVJ diagram show clearly that different groups fall into different regions with some overlap among groups. Our main result is that the joint of low-resolution (R \\(\\sim\\) 50) photometric spectra provided by the PAU survey together with the unsupervised classification provides an excellent way to classify galaxies. Moreover, it helps to find and extend the analysis of extreme ELGs to lower masses and lower SFRs in the local Universe.
DESI Complete Calibration of the Color-Redshift Relation (DC3R2): Results from early DESI data
2024
We present initial results from the Dark Energy Spectroscopic Instrument (DESI) Complete Calibration of the Color-Redshift Relation (DC3R2) secondary target survey. Our analysis uses 230k galaxies that overlap with KiDS-VIKING \\(ugriZYJHK_s\\) photometry to calibrate the color-redshift relation and to inform photometric redshift (photo-z) inference methods of future weak lensing surveys. Together with Emission Line Galaxies (ELGs), Luminous Red Galaxies (LRGs), and the Bright Galaxy Survey (BGS) that provide samples of complementary color, the DC3R2 targets help DESI to span 56% of the color space visible to Euclid and LSST with high confidence spectroscopic redshifts. The effects of spectroscopic completeness and quality are explored, as well as systematic uncertainties introduced with the use of common Self Organizing Maps trained on different photometry than the analysis sample. We further examine the dependence of redshift on magnitude at fixed color, important for the use of bright galaxy spectra to calibrate redshifts in a fainter photometric galaxy sample. We find that noise in the KiDS-VIKING photometry introduces a dominant, apparent magnitude dependence of redshift at fixed color, which indicates a need for carefully chosen deep drilling fields, and survey simulation to model this effect for future weak lensing surveys.
The PAU Survey: Narrow-band image photometry
2023
PAUCam is an innovative optical narrow-band imager mounted at the William Herschel Telescope built for the Physics of the Accelerating Universe Survey (PAUS). Its set of 40 filters results in images that are complex to calibrate, with specific instrumental signatures that cannot be processed with traditional data reduction techniques. In this paper we present two pipelines developed by the PAUS data management team with the objective of producing science-ready catalogues from the uncalibrated raw images. The Nightly pipeline takes care of all image processing, with bespoke algorithms for photometric calibration and scatter-light correction. The Multi-Epoch and Multi-Band Analysis (MEMBA) pipeline performs forced photometry over a reference catalogue to optimize the photometric redshift performance. We verify against spectroscopic observations that the current approach delivers an inter-band photometric calibration of 0.8% across the 40 narrow-band set. The large volume of data produced every night and the rapid survey strategy feedback constraints require operating both pipelines in the Port d'Informació Cientifica data centre with intense parallelization. While alternative algorithms for further improvements in photo-z performance are under investigation, the image calibration and photometry presented in this work already enable state-of-the-art photometric redshifts down to iAB=23.0.
Stellar physics with the ALHAMBRA photometric system
2011
The ALHAMBRA photometric system was specifically designed to perform a tomography of the Universe in some selected areas. Although mainly designed for extragalactic purposes, its 20 contiguous, equal-width, medium-band photometric system in the optical wavelength range, shows a great capacity for stellar classification. In this contribution we propose a methodology for stellar classification and physical parameter estimation (Teff, log g, [Fe/H], and color excess E(B – V)) based on 18 independent reddening-free Q-values from the ALHAMBRA photometry. Based on the theoretical Spectral library BaSeL 2.2, and applied to 288 stars from the Next Generation spectral Library (NGSL), we discuss the reliability of the method and its dependence on the extinction law used.
Journal Article
Dark Energy Survey Year 3 Results: Redshift Calibration of the MagLim Lens Sample from the combination of SOMPZ and clustering and its impact on Cosmology
2023
We present an alternative calibration of the MagLim lens sample redshift distributions from the Dark Energy Survey (DES) first three years of data (Y3). The new calibration is based on a combination of a Self-Organising Maps based scheme and clustering redshifts to estimate redshift distributions and inherent uncertainties, which is expected to be more accurate than the original DES Y3 redshift calibration of the lens sample. We describe in detail the methodology, we validate it on simulations and discuss the main effects dominating our error budget. The new calibration is in fair agreement with the fiducial DES Y3 redshift distributions calibration, with only mild differences (\\(<3\\sigma\\)) in the means and widths of the distributions. We study the impact of this new calibration on cosmological constraints, analysing DES Y3 galaxy clustering and galaxy-galaxy lensing measurements, assuming a \\(\\Lambda\\)CDM cosmology. We obtain \\(\\Omega_{\\rm m} = 0.30\\pm 0.04\\), \\(\\sigma_8 = 0.81\\pm 0.07 \\) and \\(S_8 = 0.81\\pm 0.04\\), which implies a \\(\\sim 0.4\\sigma\\) shift in the \\(\\Omega_{\\rm}-S_8\\) plane compared to the fiducial DES Y3 results, highlighting the importance of the redshift calibration of the lens sample in multi-probe cosmological analyses.
The PSZ-MCMF catalogue of Planck clusters over the DES region
2023
We present the first systematic follow-up of Planck Sunyaev-Zeldovich effect (SZE) selected candidates down to signal-to-noise (S/N) of 3 over the 5000 deg\\(^2\\) covered by the Dark Energy Survey. Using the MCMF cluster confirmation algorithm, we identify optical counterparts, determine photometric redshifts and richnesses and assign a parameter, \\(f_{\\rm cont}\\), that reflects the probability that each SZE-optical pairing represents a random superposition of physically unassociated systems rather than a real cluster. The new PSZ-MCMF cluster catalogue consists of 853 MCMF confirmed clusters and has a purity of 90%. We present the properties of subsamples of the PSZ-MCMF catalogue that have purities ranging from 90% to 97.5%, depending on the adopted \\(f_{\\rm cont}\\) threshold. Halo mass estimates \\(M_{500}\\), redshifts, richnesses, and optical centers are presented for all PSZ-MCMF clusters. The PSZ-MCMF catalogue adds 589 previously unknown Planck identified clusters over the DES footprint and provides redshifts for an additional 50 previously published Planck selected clusters with S/N>4.5. Using the subsample with spectroscopic redshifts, we demonstrate excellent cluster photo-\\(z\\) performance with an RMS scatter in \\(\\Delta z/(1+z)\\) of 0.47%. Our MCMF based analysis allows us to infer the contamination fraction of the initial S/N>3 Planck selected candidate list, which is ~50%. We present a method of estimating the completeness of the PSZ-MCMF cluster sample. In comparison to the previously published Planck cluster catalogues. this new S/N>3 MCMF confirmed cluster catalogue populates the lower mass regime at all redshifts and includes clusters up to z\\(\\sim\\)1.3.
Euclid: Modelling massive neutrinos in cosmology -- a code comparison
2023
The measurement of the absolute neutrino mass scale from cosmological large-scale clustering data is one of the key science goals of the Euclid mission. Such a measurement relies on precise modelling of the impact of neutrinos on structure formation, which can be studied with \\(N\\)-body simulations. Here we present the results from a major code comparison effort to establish the maturity and reliability of numerical methods for treating massive neutrinos. The comparison includes eleven full \\(N\\)-body implementations (not all of them independent), two \\(N\\)-body schemes with approximate time integration, and four additional codes that directly predict or emulate the matter power spectrum. Using a common set of initial data we quantify the relative agreement on the nonlinear power spectrum of cold dark matter and baryons and, for the \\(N\\)-body codes, also the relative agreement on the bispectrum, halo mass function, and halo bias. We find that the different numerical implementations produce fully consistent results. We can therefore be confident that we can model the impact of massive neutrinos at the sub-percent level in the most common summary statistics. We also provide a code validation pipeline for future reference.
The Evolution of Luminous Compact Blue Galaxies: Disks or Spheroids?
by
Garland, C. A.
,
Castander, F. J.
,
Pisano, D. J.
in
Accretion disks
,
Contributed Papers
,
Luminosity
2010
Luminous compact blue galaxies (LCBGs) are a diverse class of galaxies characterized by high luminosity, blue color, and high surface brightness that sit at the critical juncture of galaxies evolving from the blue to the red sequence. As part of our multi-wavelength survey of local LCBGs, we have been studying the HI content of these galaxies using both single-dish telescopes and interferometers. Our goals are to determine if single-dish HI observations represent a true measure of the dynamical mass of LCBGs and to look for signatures of recent interactions that may be triggering star formation in LCBGs. Our data show that while some LCBGs are undergoing interactions, many appear isolated. While all LCBGs contain HI and show signatures of rotation, the population does not lie on the Tully-Fisher relation nor can it evolve onto it. Furthermore, the HI maps of many LCBGs show signatures of dynamically hot components, suggesting that we are seeing the formation of a thick disk or spheroid in at least some LCBGs. There is good agreement between the HI and Hα kinematics for LCBGs, and both are similar in appearance to the Hα kinematics of high redshift star-forming galaxies. Our combined data suggest that star formation in LCBGs is primarily quenched by virial heating, consistent with model predictions.
Journal Article