Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
177 result(s) for "Castelli, Michele"
Sort by:
An Evolutionary-Focused Review of the Holosporales (Alphaproteobacteria): Diversity, Host Interactions, and Taxonomic Re-ranking as Holosporineae Subord. Nov
The order Holosporales is a broad and ancient lineage of bacteria obligatorily associated with eukaryotic hosts, mostly protists. Significantly, this is similar to other evolutionary distinct bacterial lineages (e.g. Rickettsiales and Chlamydiae ). Here, we provide a detailed and comprehensive account on the current knowledge on the Holosporales . First, acknowledging the up-to-date phylogenetic reconstructions and recent nomenclatural proposals, we reevaluate their taxonomy, thus re-ranking them as a suborder, i.e. Holosporineae , within the order Rhodospirillales . Then, we examine the phylogenetic diversity of the Holosporineae , presenting the 20 described genera and many yet undescribed sub-lineages, as well as the variety of the respective environments of provenance and hosts, which belong to several different eukaryotic supergroups. Noteworthy representatives of the Holosporineae are the infectious intranuclear Holospora , the host manipulator ‘ Caedimonas ’, and the farmed shrimp pathogen ‘ Candidatus Hepatobacter’. Next, we put these bacteria in the broad context of the whole Holosporineae , by comparing with the available data on the least studied representatives, including genome sequences. Accordingly, we reason on the most probable evolutionary trajectories for host interactions, host specificity, and emergence of potential pathogens in aquaculture and possibly humans, as well as on future research directions to investigate those many open points on the Holosporineae .
Host association and intracellularity evolved multiple times independently in the Rickettsiales
The order Rickettsiales ( Alphaproteobacteria ) encompasses multiple diverse lineages of host-associated bacteria, including pathogens, reproductive manipulators, and mutualists. Here, in order to understand how intracellularity and host association originated in this order, and whether they are ancestral or convergently evolved characteristics, we built a large and phylogenetically-balanced dataset that includes de novo sequenced genomes and a selection of published genomic and metagenomic assemblies. We perform detailed functional reconstructions that clearly indicates “late” and parallel evolution of obligate host-association in different Rickettsiales lineages. According to the depicted scenario, multiple independent horizontal acquisitions of transporters led to the progressive loss of biosynthesis of nucleotides, amino acids and other metabolites, producing distinct conditions of host-dependence. Each clade experienced a different pattern of evolution of the ancestral arsenal of interaction apparatuses, including development of specialised effectors involved in the lineage-specific mechanisms of host cell adhesion and/or invasion. Rickettsiales encompass diverse host-associated bacteria, including pathogens, parasites, and mutualists. This study shows that obligate associations with their hosts likely evolved multiple times independently, thus providing an alternative, generalisable view, on evolution of intracellularity.
Occurrence of Eustrongylides excisus (Nematoda:Dioctophymatidae) in European Perch (Perca fluviatilis) and Great Cormorant (Phalacrocorax carbo) in Lake Annone, Northern Italy
The genus Eustrongylides includes zoonotic nematodes that infect fish species and fish-eating birds of freshwater ecosystems. This study aimed to evaluate the occurrence of Eustrongylides in the paratenic host Perca fluviatilis (European perch) and in the definitive host, Phalacrocorax carbo sinensis (great cormorant), in Lake Annone, a shallow eutrophic lake located in the pre-mountainous area of the Alps in northwest Italy where wintering cormorants coexist with new breeding colonies. A total of 114 European perch and 48 cormorants were examined for the occurrence of Eustrongylides. All parasites collected were identified with microscopic examination and molecular analysis. Overall, 11 specimens of European perch (9.6%) and 13 individuals of cormorants (27%) harbored nematodes identified as fourth-stage larvae and adults of Eustrongylides excisus. The observed prevalence of Eustrongylides spp. appears to be intermediate between the higher values in cormorant breeding areas in northern Europe and the lower prevalence observed in their wintering sites in southernmost Europe. Considering the eutrophication status of freshwater ecosystems and the increasing population of the cormorants, Eustrongylides has an increasing potential range of dispersion in Europe, including Italy; thus an extensive surveillance should be carried out, especially given the zoonotic potential of this nematode.
Morphology, ultrastructure, genomics, and phylogeny of Euplotes vanleeuwenhoeki sp. nov. and its ultra-reduced endosymbiont “Candidatus Pinguicoccus supinus” sp. nov
Taxonomy is the science of defining and naming groups of biological organisms based on shared characteristics and, more recently, on evolutionary relationships. With the birth of novel genomics/bioinformatics techniques and the increasing interest in microbiome studies, a further advance of taxonomic discipline appears not only possible but highly desirable. The present work proposes a new approach to modern taxonomy, consisting in the inclusion of novel descriptors in the organism characterization: (1) the presence of associated microorganisms (e.g.: symbionts, microbiome), (2) the mitochondrial genome of the host, (3) the symbiont genome. This approach aims to provide a deeper comprehension of the evolutionary/ecological dimensions of organisms since their very first description. Particularly interesting, are those complexes formed by the host plus associated microorganisms, that in the present study we refer to as “holobionts”. We illustrate this approach through the description of the ciliate Euplotes vanleeuwenhoeki sp. nov. and its bacterial endosymbiont “ Candidatus Pinguicoccus supinus” gen. nov., sp. nov. The endosymbiont possesses an extremely reduced genome (~ 163 kbp); intriguingly, this suggests a high integration between host and symbiont.
Multi‐country investigation of the diversity and associated microorganisms isolated from tick species from domestic animals, wildlife and vegetation in selected african countries
In many areas of Africa, recent studies highlighted the great impact of ticks on animal and human health throughout the continent. On the other hand, very limited information on the bacterial endosymbionts of the African ticks and their pattern of co-infections with other bacteria are found in literature, notwithstanding their pivotal role in tick survival and vector efficiency. Thus, we investigated the distribution of selected pathogenic and symbiotic bacteria in hard ticks collected from wild, domestic animals and from vegetation in various ecological zones in Africa and their co-occurrence in the same tick host. Overall, 339 hard ticks were morphologically identified as belonging to the genera Amblyomma, Dermacentor, Hyalomma, Haemaphysalis, Ixodes and Rhipicephalus. Molecular screening provided information on pathogens circulation in Africa, detecting spotted fever group rickettsiae, Anaplasma spp., Ehrlichia ruminantium, Borrelia garinii, Babesia spp., Theileria spp. and Coxiella burnetii. Furthermore, our work provides insights on the African scenario of tick-symbiont associations, revealing the presence of Coxiella, Francisella and Midichloria across multiple tick populations. Coxiella endosymbionts were the most prevalent microorganisms, and that with the broadest spectrum of hosts, being detected in 16 tick species. Francisella was highly prevalent among the Hyalomma species tested and correlated negatively with the presence of Coxiella, showing a potential competitive interaction. Interestingly, we detected a positive association of Francisella with Rickettsia in specimens of Hy. rufipes, suggesting a synergistic interaction between them. Finally, Midichloria was the most prevalent symbiont in Rhipicephalus sanguineus sensu lato from Egypt.
Barcoding of Italian mosquitoes (BITMO): generation and validation of DNA barcoding reference libraries for native and alien species of Culicidae
Background Mosquitoes (Culicidae), as disease vectors, represent a risk for human health worldwide. Repeated introductions of alien mosquito species and the spread of invasive species have been recorded in different countries. Traditionally, identification of mosquitoes relies on morphological observation. However, morphology-based identification is associated with a number of potential disadvantages, such as the high level of specialisation of the operator and its limited applicability to damaged samples. In these cases, species identification is achieved through molecular methods based on DNA amplification. Molecular-based taxonomy has also enabled the development of techniques for the study of environmental DNA (eDNA). Previous studies indicated the 16S mitochondrial ribosomal RNA (rRNA) gene as a promising target for this application; however, 16S rRNA sequences are available for only a limited number of mosquito species. In addition, although primers for the 16S rRNA gene were designed years ago, they are based on limited numbers of mosquito sequences. Thus, the aims of this study were to: (i) design pan-mosquito 16S rRNA gene primers; (ii) using these primers, generate a 16S rRNA gene mosquito reference library (with a focus on mosquitoes present in Italy); and (iii) compare the discriminatory power of the 16S rRNA gene with two widely used molecular markers, cytochrome c oxidase subunit 1 mitochondrial gene (COI) and internal transcribed spacer 2 (ITS2). Methods A total of six mosquito genera (28 mosquito species) were included in this study: Aedes ( n = 16 species), Anopheles (5 species), Coquillettidia (1 species), Culex (3 species), Culiseta (2 species) and Uranotaenia (1 species). DNA was extracted from the whole mosquito body, and more than one specimen for each species was included in the analysis. Sanger sequencing was used to generate DNA sequences that were then analysed through the Barcode of Life Data Systems (BOLD). Phylogenetic analyses were also performed. Results Novel 16S rDNA gene, COI and ITS2 sequences were generated. The 16S rRNA gene was shown to possess sufficient informativeness for the identification of mosquito species, with a discriminatory power equivalent to that of COI. Conclusions This study contributes to the generation of DNA barcode libraries, focussed on Italian mosquitoes, with a significant increase in the number of 16S rRNA gene sequences. We hope that these novel sequences will provide a resource for studies on the biodiversity, monitoring and metabarcoding of mosquitoes, including eDNA-based approaches. Graphical abstract
Molecular characterization of Dictyocaulus nematodes in wild red deer Cervus elaphus in two areas of the Italian Alps
Nematodes of the genus Dictyocaulus are the causative agents of parasitic bronchitis and pneumonia in several domestic and wild ungulates. Various species have been described in wild cervids, as the case of Dictyocaulus cervi in red deer, recently described as a separate species from Dictyocaulus eckerti . In Italy, information on dictyocaulosis in wildlife is limited and often outdated. In this work, 250 red deer were examined for the presence of Dictyocaulus spp. in two areas of the Italian Alps ( n  = 104 from Valle d’Aosta, n  = 146 from Stelvio National Park), and the retrieved lungworms were molecularly characterized. Lungworms were identified in 23 and 32 animals from Valle d’Aosta and Stelvio National Park, respectively. The nematodes, morphologically identified as D. cervi , were characterized molecularly (18S rDNA, ITS2 , and coxI ). Consistently, almost all specimens were found to be phylogenetically related to D. cervi . Three individuals, detected from both study sites and assigned to an undescribed Dictyocaulus sp., clustered with Dictyocaulus specimens isolated from red deer and fallow deer in previous studies. Within each of D. cervi and the undescribed Dictyocaulus sp., the newly isolated nematodes phylogenetically clustered based on their geographical origin. This study revealed the presence of D. cervi in Italian red deer, and an undetermined Dictyocaulus sp. that should be more deeply investigated. The results suggest that further analyses should be focused on population genetics of cervids and their lungworms to assess how they evolved, or co-evolved, throughout time and space and to assess the potential of transmission towards farmed animals.
Diversity and environmental distribution of the cosmopolitan endosymbiont “Candidatus Megaira”
Members of the order Rickettsiales are often found in association with ciliated protists. An interesting case is the bacterial endosymbiont “ Candidatus Megaira”, which is phylogenetically closely related to the pathogen Rickettsia . “ Candidatus Megaira” was first described as an intracellular bacterium in several ciliate species. Since then it has been found in association with diverse evolutionary distantly-related hosts, among them other unicellular eukaryotes, and also algae, and metazoa, such as cnidarians. We provide the characterization of several new strains of the type species “ Candidatus Megaira polyxenophila”, and the multidisciplinary description of a novel species, “ Candidatus Megaira venefica”, presenting peculiar features, which highlight the diversity and variability of these widespread bacterial endosymbionts. Screening of the 16S rRNA gene short amplicon database and phylogenetic analysis of 16S rRNA gene hypervariable regions revealed the presence of further hidden lineages, and provided hints on the possibility that these bacteria may be horizontally transmitted among aquatic protists and metazoa. The phylogenetic reconstruction supports the existence of at least five different separate species-level clades of “ Candidatus Megaira”, and we designed a set of specific probes allowing easy recognition of the four major clades of the genus.
Microbial Consortium Associated with the Antarctic Marine Ciliate Euplotes focardii: An Investigation from Genomic Sequences
We report the characterization of the bacterial consortium associated to Euplotes focardii, a strictly psychrophilic marine ciliate that was maintained in laboratory cultures at 4 °C after its first isolation from Terra Nova Bay, in Antarctica. By Illumina genome analyser, we obtained 11,179 contigs of potential prokaryotic origin and classified them according to the NCBI’s prokaryotic attributes table. The majority of these sequences correspond to either Bacteroidetes (16 %) or Proteobacteria (78 %). The latter were dominated by gamma- (39 %, including sequences related to the pathogenic genus Francisella), and alpha-proteobacterial (30 %) sequences. Analysis of the Pfam domain family and Gene Ontology term variation revealed that the most frequent terms that appear unique to this consortium correspond to proteins involved in “transmembrane transporter activity” and “oxidoreductase activity”. Furthermore, we identified genes that encode for enzymes involved in the catabolism of complex substance for energy reserves. We also characterized members of the transposase and integrase superfamilies, whose role in bacterial evolution is well documented, as well as putative antifreeze proteins. Antibiotic treatments of E. focardii cultures delayed the cell division of the ciliate. To conclude, our results indicate that this consortium is largely represented by bacteria derived from the original Antarctic sample and may contribute to the survival of E. focardii in laboratory condition. Furthermore, our results suggest that these bacteria may have a more general role in E. focardii survival in its natural cold and oxidative environment.
Characterization of a Pseudokeronopsis Strain (Ciliophora, Urostylida) and Its Bacterial Endosymbiont “Candidatus Trichorickettsia” (Alphaproteobacteria, Rickettsiales)
Symbiotic associations between bacteria and ciliate protists are rather common. In particular, several cases were reported involving bacteria of the alphaproteobacterial lineage Rickettsiales, but the diversity, features, and interactions in these associations are still poorly understood. In this work, we characterized a novel ciliate protist strain originating from Brazil and its associated Rickettsiales endosymbiont by means of live and ultrastructural observations, as well as molecular phylogeny. Though with few morphological peculiarities, the ciliate was found to be phylogenetically affiliated with Pseudokeronopsis erythrina, a euryhaline species, which is consistent with its origin from a lagoon with significant spatial and seasonal salinity variations. The bacterial symbiont was assigned to “Candidatus Trichorickettsia mobilis subsp. hyperinfectiva”, being the first documented case of a Rickettsiales associated with urostylid ciliates. It resided in the host cytoplasm and bore flagella, similarly to many, but not all, conspecifics in other host species. These findings highlight the ability of “Candidatus Trichorickettsia” to infect multiple distinct host species and underline the importance of further studies on this system, in particular on flagella and their regulation, from a functional and also an evolutionary perspective, considering the phylogenetic proximity with the well-studied and non-flagellated Rickettsia.