Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
74
result(s) for
"Castiglione, Marco"
Sort by:
A Blockchain Implementation Prototype for the Electronic Open Source Traceability of Wood along the Whole Supply Chain
by
Sperandio, Giulio
,
Castiglione, Marco
,
Proto, Andrea Rosario
in
ARDUINO
,
Automation
,
Blockchain
2018
This is the first work to introduce the use of blockchain technology for the electronic traceability of wood from standing tree to final user. Infotracing integrates the information related to the product quality with those related to the traceability [physical and digital documents (Radio Frequency IDentification—RFID—architecture)] within an online information system whose steps (transactions) can be made safe to evidence of alteration through the blockchain. This is a decentralized and distributed ledger that keeps records of digital transactions in such a way that makes them accessible and visible to multiple participants in a network while keeping them secure without the need of a centralized certification organism. This work implements a blockchain architecture within the wood chain electronic traceability. The infotracing system is based on RFID sensors and open source technology. The entire forest wood supply chain was simulated from standing trees to the final product passing through tree cutting and sawmill process. Different kinds of Internet of Things (IoT) open source devices and tags were used, and a specific app aiming the forest operations was engineered to collect and store in a centralized database information (e.g., species, date, position, dendrometric and commercial information).
Journal Article
Comparative evaluation of the extracellular production of a polyethylene terephthalate degrading cutinase by Corynebacterium glutamicum and leaky Escherichia coli in batch and fed-batch processes
by
Hübner, Holger
,
Fritzsche, Stefanie
,
Castiglione, Kathrin
in
Analysis
,
Applied Microbiology
,
Batch Cell Culture Techniques
2024
Background
With a growing global population, the generation of plastic waste and the depletion of fossil resources are major concerns that need to be addressed by developing sustainable and efficient plastic recycling methods. Biocatalytic recycling is emerging as a promising ecological alternative to conventional processes, particularly in the recycling of polyethylene terephthalate (PET). However, cost-effective production of the involved biocatalyst is essential for the transition of enzymatic PET recycling to a widely used industrial technology. Extracellular enzyme production using established organisms such as
Escherichia coli
or
Corynebacterium glutamicum
offers a promising way to reduce downstream processing costs.
Results
In this study, we compared extracellular recombinant protein production by classical secretion in
C. glutamicum
and by membrane leakage in
E. coli
. A superior extracellular release of the cutinase ICCG
DAQI
was observed with
E. coli
in batch and fed-batch processes on a litre-scale. This phenomenon in
E. coli
, in the absence of a signal peptide, might be associated with membrane-destabilizing catalytic properties of the expressed cutinase. Optimisations regarding induction, expression temperature and duration as well as carbon source significantly enhanced extracellular cutinase activity. In particular, in fed-batch cultivation of
E. coli
at 30 °C with lactose as carbon source and inducer, a remarkable extracellular activity (137 U mL
−1
) and cutinase titre (660 mg L
−1
) were achieved after 48 h. Literature values obtained with other secretory organisms, such as
Bacillus subtilis
or
Komagataella phaffii
were clearly outperformed. The extracellular ICCG
DAQI
produced showed high efficacy in the hydrolysis of PET textile fibres, either chromatographically purified or unpurified as culture supernatant. In less than 18 h, 10 g L
−1
substrate was hydrolysed using supernatant containing 3 mg cutinase ICCG
DAQI
at 70 °C, pH 9 with terephthalic acid yields of up to 97.8%.
Conclusion
Extracellular production can reduce the cost of recombinant proteins by simplifying downstream processing. In the case of the PET-hydrolysing cutinase ICCG
DAQI
, it was even possible to avoid chromatographic purification and still achieve efficient PET hydrolysis. With such production approaches and their further optimisation, enzymatic recycling of PET can contribute to a more efficient and environmentally friendly solution to the industrial recycling of plastics in the future.
Journal Article
Outcomes of COVID-19 in 79 patients with IBD in Italy: an IG-IBD study
by
Castiglione, Fabiana
,
Allocca, Mariangela
,
Soriano, Alessandra
in
Age Factors
,
Betacoronavirus - isolation & purification
,
Cardiovascular disease
2020
ObjectivesCOVID-19 has rapidly become a major health emergency worldwide. Patients with IBD are at increased risk of infection, especially when they have active disease and are taking immunosuppressive therapy. The characteristics and outcomes of COVID-19 in patients with IBD remain unclear.DesignThis Italian prospective observational cohort study enrolled consecutive patients with an established IBD diagnosis and confirmed COVID-19. Data regarding age, sex, IBD (type, treatments and clinical activity), other comorbidities (Charlson Comorbidity Index (CCI)), signs and symptoms of COVID-19 and therapies were compared with COVID-19 outcomes (pneumonia, hospitalisation, respiratory therapy and death).ResultsBetween 11 and 29 March 2020, 79 patients with IBD with COVID-19 were enrolled at 24 IBD referral units. Thirty-six patients had COVID-19-related pneumonia (46%), 22 (28%) were hospitalised, 7 (9%) required non-mechanical ventilation, 9 (11%) required continuous positive airway pressure therapy, 2 (3%) had endotracheal intubation and 6 (8%) died. Four patients (6%) were diagnosed with COVID-19 while they were being hospitalised for a severe flare of IBD. Age over 65 years (p=0.03), UC diagnosis (p=0.03), IBD activity (p=0.003) and a CCI score >1 (p=0.04) were significantly associated with COVID-19 pneumonia, whereas concomitant IBD treatments were not. Age over 65 years (p=0.002), active IBD (p=0.02) and higher CCI score were significantly associated with COVID-19-related death.ConclusionsActive IBD, old age and comorbidities were associated with a negative COVID-19 outcome, whereas IBD treatments were not. Preventing acute IBD flares may avoid fatal COVID-19 in patients with IBD. Further research is needed.
Journal Article
The Moss Leptodictyum riparium Counteracts Severe Cadmium Stress by Activation of Glutathione Transferase and Phytochelatin Synthase, but Slightly by Phytochelatins
by
Sorbo, Sergio
,
Castiglione, Monica Ruffini
,
Bellini, Erika
in
Aminoacyltransferases - metabolism
,
Antioxidants
,
Biodegradation, Environmental
2020
In the present work, we investigated the response to Cd in Leptodictyum riparium, a cosmopolitan moss (Bryophyta) that can accumulate higher amounts of metals than other plants, even angiosperms, with absence or slight apparent damage. High-performance liquid chromatography followed by electrospray ionization tandem mass spectrometry of extracts from L. riparium gametophytes, exposed to 0, 36 and 360 µM Cd for 7 days, revealed the presence of γ-glutamylcysteine (γ-EC), reduced glutathione (GSH), and traces of phytochelatins. The increase in Cd concentrations progressively augmented reactive oxygen species levels, with activation of both antioxidant (catalase and superoxide dismutase) and detoxifying (glutathione-S-transferase) enzymes. After Cd treatment, cytosolic and vacuolar localization of thiol peptides was performed by means of the fluorescent dye monochlorobimane and subsequent observation with confocal laser scanning microscopy. The cytosolic fluorescence observed with the highest Cd concentrations was also consistent with the formation of γ-EC-bimane in the cytosol, possibly catalyzed by the peptidase activity of the L. riparium phytochelatin synthase. On the whole, activation of phytochelatin synthase and glutathione-S-transferase, but minimally phytochelatin synthesis, play a role to counteract Cd toxicity in L. riparium, in this manner minimizing the cellular damage caused by the metal. This study strengthens previous investigations on the L. riparium ability to efficiently hinder metal pollution, hinting at a potential use for biomonitoring and phytoremediation purposes.
Journal Article
Comparative evaluation of the extracellular production of a polyethylene terephthalate degrading cutinase by Corynebacterium glutamicum and leaky Escherichia coli in batch and fed-batch processes
by
Fritzsche, Stefanie
,
Oldiges, Marco
,
Hübner, Holger
in
Chemical properties
,
Decomposition (Chemistry)
,
Environmental aspects
2024
With a growing global population, the generation of plastic waste and the depletion of fossil resources are major concerns that need to be addressed by developing sustainable and efficient plastic recycling methods. Biocatalytic recycling is emerging as a promising ecological alternative to conventional processes, particularly in the recycling of polyethylene terephthalate (PET). However, cost-effective production of the involved biocatalyst is essential for the transition of enzymatic PET recycling to a widely used industrial technology. Extracellular enzyme production using established organisms such as Escherichia coli or Corynebacterium glutamicum offers a promising way to reduce downstream processing costs. In this study, we compared extracellular recombinant protein production by classical secretion in C. glutamicum and by membrane leakage in E. coli. A superior extracellular release of the cutinase ICCG.sub.DAQI was observed with E. coli in batch and fed-batch processes on a litre-scale. This phenomenon in E. coli, in the absence of a signal peptide, might be associated with membrane-destabilizing catalytic properties of the expressed cutinase. Optimisations regarding induction, expression temperature and duration as well as carbon source significantly enhanced extracellular cutinase activity. In particular, in fed-batch cultivation of E. coli at 30 [degrees]C with lactose as carbon source and inducer, a remarkable extracellular activity (137 U mL.sup.-1) and cutinase titre (660 mg L.sup.-1) were achieved after 48 h. Literature values obtained with other secretory organisms, such as Bacillus subtilis or Komagataella phaffii were clearly outperformed. The extracellular ICCG.sub.DAQI produced showed high efficacy in the hydrolysis of PET textile fibres, either chromatographically purified or unpurified as culture supernatant. In less than 18 h, 10 g L.sup.-1 substrate was hydrolysed using supernatant containing 3 mg cutinase ICCG.sub.DAQI at 70 [degrees]C, pH 9 with terephthalic acid yields of up to 97.8%. Extracellular production can reduce the cost of recombinant proteins by simplifying downstream processing. In the case of the PET-hydrolysing cutinase ICCG.sub.DAQI, it was even possible to avoid chromatographic purification and still achieve efficient PET hydrolysis. With such production approaches and their further optimisation, enzymatic recycling of PET can contribute to a more efficient and environmentally friendly solution to the industrial recycling of plastics in the future.
Journal Article
Radiomic Features Applied to Contrast Enhancement Spectral Mammography: Possibility to Predict Breast Cancer Molecular Subtypes in a Non-Invasive Manner
by
Origgi, Daniela
,
Bellerba, Federica
,
Bozzini, Anna Carla
in
Biopsy
,
Breast cancer
,
Breast Neoplasms - diagnostic imaging
2022
We aimed to investigate the association between the radiomic features of contrast-enhanced spectral mammography (CESM) images and a specific receptor pattern of breast neoplasms. In this single-center retrospective study, we selected patients with neoplastic breast lesions who underwent CESM before a biopsy and surgical assessment between January 2013 and February 2022. Radiomic analysis was performed on regions of interest selected from recombined CESM images. The association between the features and each evaluated endpoint (ER, PR, Ki-67, HER2+, triple negative, G2–G3 expressions) was investigated through univariate logistic regression. Among the significant and highly correlated radiomic features, we selected only the one most associated with the endpoint. From a group of 321 patients, we enrolled 205 malignant breast lesions. The median age at the exam was 50 years (interquartile range (IQR) 45–58). NGLDM_Contrast was the only feature that was positively associated with both ER and PR expression (p-values = 0.01). NGLDM_Coarseness was negatively associated with Ki-67 expression (p-value = 0.02). Five features SHAPE Volume(mL), SHAPE_Volume(vx), GLRLM_RLNU, NGLDM_Busyness and GLZLM_GLNU were all positively and significantly associated with HER2+; however, all of them were highly correlated. Radiomic features of CESM images could be helpful to predict particular molecular subtypes before a biopsy.
Journal Article
Myocardial Infarction Following COVID-19 Vaccine Administration: Post Hoc, Ergo Propter Hoc?
2022
Vaccination against coronavirus disease 2019 (COVID-19) is the safest and most effective strategy for controlling the pandemic. However, some cases of acute cardiac events following vaccine administration have been reported, including myocarditis and myocardial infarction (MI). While post-vaccine myocarditis has been widely discussed, information about post-vaccine MI is scarce and heterogenous, often lacking in histopathological and pathophysiological details. We hereby present five cases (four men, mean age 64 years, range 50–76) of sudden death secondary to MI and tightly temporally related to COVID-19 vaccination. In each case, comprehensive macro- and microscopic pathological analyses were performed, including post-mortem cardiac magnetic resonance, to ascertain the cause of death. To investigate the pathophysiological determinants of MI, toxicological and tryptase analyses were performed, yielding negative results, while the absence of anti-platelet factor 4 antibodies ruled out vaccine-induced thrombotic thrombocytopenia. Finally, genetic testing disclosed that all subjects were carriers of at least one pro-thrombotic mutation. Although the presented cases do not allow us to establish any causative relation, they should foster further research to investigate the possible link between COVID-19 vaccination, pro-thrombotic genotypes, and acute cardiovascular events.
Journal Article
Prediction of the Malignancy of a Breast Lesion Detected on Breast Ultrasound: Radiomics Applied to Clinical Practice
by
Origgi, Daniela
,
Bellerba, Federica
,
Bozzini, Anna Carla
in
Algorithms
,
Biopsy
,
Breast cancer
2023
The study aimed to evaluate the performance of radiomics features and one ultrasound CAD (computer-aided diagnosis) in the prediction of the malignancy of a breast lesion detected with ultrasound and to develop a nomogram incorporating radiomic score and available information on CAD performance, conventional Breast Imaging Reporting and Data System evaluation (BI-RADS), and clinical information. Data on 365 breast lesions referred for breast US with subsequent histologic analysis between January 2020 and March 2022 were retrospectively collected. Patients were randomly divided into a training group (n = 255) and a validation test group (n = 110). A radiomics score was generated from the US image. The CAD was performed in a subgroup of 209 cases. The radiomics score included seven radiomics features selected with the LASSO logistic regression model. The multivariable logistic model incorporating CAD performance, BI-RADS evaluation, clinical information, and radiomic score as covariates showed promising results in the prediction of the malignancy of breast lesions: Area under the receiver operating characteristic curve, [AUC]: 0.914; 95% Confidence Interval, [CI]: 0.876–0.951. A nomogram was developed based on these results for possible future applications in clinical practice.
Journal Article
Monitoring the manufacturing and quality of medicines: a fundamental task of pharmacovigilance
by
Ilaria Grisoni
,
Mircea Ciuca
,
Elena Prokofyeva
in
Biological products
,
GDP; GMP; GVP; adverse drug reaction; counterfeit; falsified; lack of efficacy; manufacturing; pharmacovigilance; product quality complaints; product recall; quality defect; safety; side effects
,
Generic drugs
2021
The collection and assessment of individual case safety reports (ICSRs) is important to detect unknown adverse drug reactions particularly in the first decade after approval of new chemical entities. However, regulations require that these activities are routinely undertaken for all medicinal products, including older medicines such as generic medicinal products with a well-established safety profile. For the latter, the risk management plans no longer contain important risks, considered important safety concerns, on the basis that routine pharmacovigilance activity would not allow their further characterisation. Society assumes that unexpected adverse reactions causally related to pharmacological activity are very unlikely to be detected for such well-established medicines, but important risks can still occur. For these products, a change in the safety profile which is brand or source specific and usually local in nature, associated with failures with the adequate control of quality of manufacturing or distribution are important safety issues. These may be the consequence of manufacturing and pharmacovigilance quality systems that are not fully integrated over the product life cycle (e.g. inadequate control of quality defects affecting one or multiple batches; inadequate impact assessment of change/variation of manufacturing, quality control testing, storage and distribution processes; inadequate control over the distribution channels including the introduction of counterfeit or falsified products into the supply chain). Drug safety hazards caused by the above-mentioned issues have been identified with different products and formulations, from small molecules to complex molecules such as biological products extracted from animal sources, biosimilars and advanced therapy medicinal products. The various phases of the drug manufacturing and distribution of pharmaceutical products require inputs from pharmacovigilance to assess any effects of quality-related issues and to identify proportionate risk minimisation measures that often have design implications for a medicine which requires a close link between proactive vigilance and good manufacturing practice. To illustrate our argument for closer organisational integration, some examples of drug safety hazards originating from quality, manufacturing and distribution issues are discussed.
Plain language summary
Monitoring the manufacturing and quality of medicines: the fundamental task of pharmacovigilance
Pharmacovigilance is the science relating to the collection, detection, assessment, monitoring, and prevention of adverse reactions with pharmaceutical products. The collection and assessment of adverse reactions are particularly important in the first decade after marketing authorisation of a drug as the information gathered in this period could help, for example, to identify complications from its use which were unknown before its commercialization. However, when it comes to medicines that have been on the market for a long time there is general acceptance that their safety profile is already well-established and unknown adverse reactions unlikely to occur. Nevertheless, even older medicines, such as generic drugs, can generate new risks. For these drugs a change in the safety profile could be the result of inadequate control of their quality, manufacturing and distribution systems. To overcome such an obstacle, it is necessary to fully integrate manufacturing and pharmacovigilance quality systems in the medicine life-cycle. This could help detect safety hazards and prevent the development of new complications which may arise due to the poor quality of a drug. Pharmacovigilance activities should indeed be included in all phases of the drugs’ manufacturing and distribution process, regardless of their chemical complexity to detect quality-related matters in good time and reduce the risk of safety concerns to a minimum.
Journal Article
Transthyretin Stabilizers and Seeding Inhibitors as Therapies for Amyloid Transthyretin Cardiomyopathy
by
Perrone, Marco Alfonso
,
Emdin, Michele
,
Morfino, Paolo
in
Amyloidosis
,
cardiac amyloidosis
,
Cardiomyopathy
2023
Transthyretin (TTR) amyloid cardiomyopathy (ATTR-CM) is a progressive and increasingly recognized cause of heart failure which is associated with high mortality and morbidity. ATTR-CM is characterized by the misfolding of TTR monomers and their deposition within the myocardium as amyloid fibrils. The standard of care for ATTR-CM consists of TTR-stabilizing ligands, such as tafamidis, which aim at maintaining the native structure of TTR tetramers, thus preventing amyloid aggregation. However, their efficacy in advanced-staged disease and after long-term treatment is still a source of concern, suggesting the existence of other pathogenetic factors. Indeed, pre-formed fibrils present in the tissue can further accelerate amyloid aggregation in a self-propagating process known as “amyloid seeding”. The inhibition of amyloidogenesis through TTR stabilizers combined with anti-seeding peptides may represent a novel strategy with additional benefits over current therapies. Finally, the role of stabilizing ligands needs to be reassessed in view of the promising results derived from trials which have evaluated alternative strategies, such as TTR silencers and immunological amyloid disruptors.
Journal Article