Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
242
result(s) for
"Castilla, M. C."
Sort by:
Highlands in Transition: Urbanization, Pastoralism, Mining, Tourism, and Wildlife in the Argentinian Puna
2018
Land use change is a key component of regional environmental change. In mountain regions, where conditions for agriculture and human life are often difficult, land use trends are dominated by changes in the population's distribution across rural and urban areas and shifts in the main human activities. In the Argentinian puna—a high-elevation subtropical plateau of about 95,000 km2 situated above 3200 masl—land is chiefly used for grazing, mining, and tourism. In this article, we analyze trends in these land uses over the last 57 years in the context of climatic changes toward drier and warmer conditions. Since 1960, the human population grew from 80,000 to 130,000; but this increase largely occurred in the scattered urban centers, while the rural population decreased. The main livestock— sheep—showed a net decrease of around 100,000 animals (–18.5%), with numbers increasing between 1960 and 1980 and then dropping markedly. The number of mining operations declined during the 1970s and 1980s and then rose sharply, reaching a 30% increase since the 1990s. Simultaneously, structural wild vicuña populations increased from a few thousand to around 130,000. These results show that environmental changes over the past half century involved a major wildlife recovery associated with a change from widespread extensive grazing to intensive but spatially limited impacts around mining operations and growing urban centers. Tourism emerged as a new activity over the last decades, but the environmental impacts have been poorly studied. To promote local development and regional conservation, research priorities should include (1) empirical assessments of the ecological consequences of land use changes, such as grazing regimes shifting from domestic to wild herbivores, as well as the impacts of mining, tourism, and urbanization on wetlands and hydrological regimes; (2) modeling of future scenarios of mining and tourism expansion and resulting conflicts with environmental conservation; and (3) coproduction of knowledge about interactions among land uses, climate change, and the different decision-making agents.
Journal Article
Highlands in Transition: Urbanization, Pastoralism, Mining, Tourism, and Wildlife in the Argentinian Puna
by
Grau, A
,
Izquierdo, Andrea E
,
Castilla, M C
in
Agricultural production
,
Climate change
,
Conservation
2018
Land use change is a key component of regional environmental change. In mountain regions, where conditions for agriculture and human life are often difficult, land use trends are dominated by changes in the population's distribution across rural and urban areas and shifts in the main human activities. In the Argentinian puna-a high-elevation subtropical plateau of about 95,000 km2 situated above 3200 masl-land is chiefly used for grazing, mining, and tourism. In this article, we analyze trends in these land uses over the last 57years in the context of climatic changes toward drier and warmer conditions. Since 1960, the human population grew from 80,000 to 130,000; but this increase largely occurred in the scattered urban centers, while the rural population decreased. The main livestock-sheep-showed a net decrease of around 100,000 animals (-18.5%), with numbers increasing between 1960 and 1980 and then dropping markedly. The number of mining operations declined during the 1970s and 1980s and then rose sharply, reaching a 30% increase since the 1990s. Simultaneously, structural wild vicuña populations increased from a few thousand to around 130,000. These results show that environmental changes over the past half century involved a major wildlife recovery associated with a change from widespread extensive grazing to intensive but spatially limited impacts around mining operations and growing urban centers. Tourism emerged as a new activity over the last decades, but the environmental impacts have been poorly studied. To promote local development and regional conservation, research priorities should include (1) empirical assessments of the ecological consequences of land use changes, such as grazing regimes shifting from domestic to wild herbivores, as well as the impacts of mining, tourism, and urbanization on wetlands and hydrological regimes; (2) modeling of future scenarios of mining and tourism expansion and resulting conflicts with environmental conservation; and (3) coproduction of knowledge about interactions among land uses, climate change, and the different decision-making agents.
Journal Article
Diabetes y enfermedad cardiovascular, aspectos actuales de su manejo: la visión del cardiólogo
by
Betancur, K.
,
Aranzazu-Uribe, M.
,
Ramírez-Ramos, C. F.
in
Cardiovascular diseases
,
Diabetes
,
Diabetes mellitus
2020
La diabetes es una enfermedad prevalente, con casos en aumento en todo el mundo, y se relaciona de forma directa con otras condiciones entre ellas la obesidad. Así, la diabetes supone un riesgo cardiovascular mayor en aquellos pacientes que la padecen y una vez se manifiesta es la causa más importante de morbimortalidad. A lo largo de los últimos años, hemos tenido un cambio en el paradigma del manejo de esta condición, razón por la cual se ha soslayado el enfoque glucocéntrico para hacer una aproximación integral al riesgo global y los demás factores asociados. Los estudios recientes han aportado una valiosa información de seguridad cardiovascular, pero lo más interesante es que han demostrado que algunos grupos farmacológicos generan un beneficio adicional en la población con condición cardiovascular. Es tan fuerte el impacto de estos medicamentos que se están posesionando como la estrategia de manejo inicial para la diabetes.
Journal Article
Marine reserves can mitigate and promote adaptation to climate change
by
Wilson, Rod W.
,
McCauley, Douglas J.
,
Sumaila, Ussif Rashid
in
Acidification
,
Adaptation
,
Biodiversity and Ecology
2017
Strong decreases in greenhouse gas emissions are required to meet the reduction trajectory resolved within the 2015 Paris Agreement. However, even these decreases will not avert serious stress and damage to life on Earth, and additional steps are needed to boost the resilience of ecosystems, safeguard their wildlife, and protect their capacity to supply vital goods and services. We discuss how well-managed marine reserves may help marine ecosystems and people adapt to five prominent impacts of climate change: acidification, sea-level rise, intensification of storms, shifts in species distribution, and decreased productivity and oxygen availability, as well as their cumulative effects. We explore the role of managed ecosystems in mitigating climate change by promoting carbon sequestration and storage and by buffering against uncertainty in management, environmental fluctuations, directional change, and extreme events. We highlight both strengths and limitations and conclude that marine reserves are a viable low-tech, cost-effective adaptation strategy that would yield multiple cobenefits from local to global scales, improving the outlook for the environment and people into the future.
Journal Article
Spatial and temporal shifts in photoperiod with climate change
by
Buonaiuto, D. M.
,
Morales-Castilla, I.
,
Ettinger, A. K.
in
budburst
,
Climate Change
,
daylength
2021
Climate change causes both temporal (e.g. advancing spring phenology) and geographic (e.g. range expansion poleward) species shifts, which affect the photoperiod experienced at critical developmental stages (‘experienced photoperiod’). As photoperiod is a common trigger of seasonal biological responses – affecting woody plant spring phenology in 87% of reviewed studies that manipulated photoperiod – shifts in experienced photoperiod may have important implications for future plant distributions and fitness. However, photoperiod has not been a focus of climate change forecasting to date, especially for early-season (‘spring’) events, often assumed to be driven by temperature. Synthesizing published studies, we find that impacts on experienced photoperiod from temporal shifts could be orders of magnitude larger than from spatial shifts (1.6 h of change for expected temporal vs 1 min for latitudinal shifts). Incorporating these effects into forecasts is possible by leveraging existing experimental data; we show that results from growth chamber experiments on woody plants often have data relevant for climate change impacts, and suggest that shifts in experienced photoperiod may increasingly constrain responses to additional warming. Further, combining modeling approaches and empirical work on when, where and how much photoperiod affects phenology could rapidly advance our understanding and predictions of future spatio-temporal shifts from climate change.
Journal Article
The evolution of critical thermal limits of life on Earth
by
Kühn, Ingolf
,
Hawkins, Bradford A.
,
Olalla-Tárraga, Miguel Ángel
in
631/158/852
,
631/158/857
,
631/449/1736
2021
Understanding how species’ thermal limits have evolved across the tree of life is central to predicting species’ responses to climate change. Here, using experimentally-derived estimates of thermal tolerance limits for over 2000 terrestrial and aquatic species, we show that most of the variation in thermal tolerance can be attributed to a combination of adaptation to current climatic extremes, and the existence of evolutionary ‘attractors’ that reflect either boundaries or optima in thermal tolerance limits. Our results also reveal deep-time climate legacies in ectotherms, whereby orders that originated in cold paleoclimates have presently lower cold tolerance limits than those with warm thermal ancestry. Conversely, heat tolerance appears unrelated to climate ancestry. Cold tolerance has evolved more quickly than heat tolerance in endotherms and ectotherms. If the past tempo of evolution for upper thermal limits continues, adaptive responses in thermal limits will have limited potential to rescue the large majority of species given the unprecedented rate of contemporary climate change.
Historical climate adaptation can give insight into the potential for adaptation to contemporary changing climates. Here Bennett et al. investigate thermal tolerance evolution across much of the tree of life and find different effects of ancestral climate on the subsequent evolution of ectotherms vs. endotherms.
Journal Article
Winter temperatures predominate in spring phenological responses to warming
by
Chamberlain, C J
,
Savas, T
,
Ettinger, A K
in
Anthropogenic climate changes
,
Anthropogenic factors
,
Chill strengthening
2020
Research on woody plant species highlights three major cues that shape spring phenological events: chilling, forcing and photoperiod. Increasing research on the phenological impacts of climate change has led to debate over whether chilling and/or photoperiod cues have slowed phenological responses to warming in recent years. Here we use a global meta-analysis of all published experiments to test the relative effects of these cues. Almost all species show strong responses to all three cues, with chilling being the strongest and photoperiod the weakest. Forecasts from our findings for Central Europe suggest that spring phenology will continue to advance, as stalling effects of chilling generally appear above 4 °C warming in this region. Our results unify both sides of the debate over phenological cues: while all species may respond to all cues strongly in experimental conditions, in current environmental conditions the dominant signal of climate change is from increased forcing.Spring phenology is influenced by chilling, forcing and photoperiod cues; the phenological response to warming from anthropogenic climate change may be slowed by chilling or photoperiod. Plant species respond to all cues in experiments but under environmental conditions, forcing predominates.
Journal Article
Navigating transformations in governance of Chilean marine coastal resources
by
Rodríguez-Sickert, Carlos
,
Folke, Carl
,
Hughes, Terry P.
in
Animals
,
Aquatic ecosystems
,
artisanal fishing
2010
Marine ecosystems are in decline. New transformational changes in governance are urgently required to cope with overfishing, pollution, global changes, and other drivers of degradation. Here we explore social, political, and ecological aspects of a transformation in governance of Chile's coastal marine resources, from 1980 to today. Critical elements in the initial preparatory phase of the transformation were (i) recognition of the depletion of resource stocks, (ii) scientific knowledge on the ecology and resilience of targeted species and their role in ecosystem dynamics, and (iii) demonstration-scale experimental trials, building on smaller-scale scientific experiments, which identified new management pathways. The trials improved cooperation among scientists and fishers, integrating knowledge and establishing trust. Political turbulence and resource stock collapse provided a window of opportunity that triggered the transformation, supported by new enabling legislation. Essential elements to navigate this transformation were the ability to network knowledge from the local level to influence the decision-making processes at the national level, and a preexisting social network of fishers that provided political leverage through a national confederation of artisanal fishing collectives. The resultant governance scheme includes a revolutionary national system of marine tenure that allocates user rights and responsibilities to fisher collectives. Although fine tuning is necessary to build resilience of this new regime, this transformation has improved the sustainability of the interconnected social—ecological system. Our analysis of how this transformation unfolded provides insights into how the Chilean system could be further developed and identifies generalized pathways for improved governance of marine resources around the world.
Journal Article
Thermal tolerance patterns across latitude and elevation
by
Hargreaves, Anna L.
,
Verberk, Wilco C. E. P.
,
Calosi, Piero
in
Acclimatization
,
Altitude
,
Animals
2019
Linking variation in species' traits to large-scale environmental gradients can lend insight into the evolutionary processes that have shaped functional diversity and future responses to environmental change. Here, we ask how heat and cold tolerance vary as a function of latitude, elevation and climate extremes, using an extensive global dataset of ectotherm and endotherm thermal tolerance limits, while accounting for methodological variation in acclimation temperature, ramping rate and duration of exposure among studies. We show that previously reported relationships between thermal limits and latitude in ectotherms are robust to variation in methods. Heat tolerance of terrestrial ectotherms declined marginally towards higher latitudes and did not vary with elevation, whereas heat tolerance of freshwater and marine ectotherms declined more steeply with latitude. By contrast, cold tolerance limits declined steeply with latitude in marine, intertidal, freshwater and terrestrial ectotherms, and towards higher elevations on land. In all realms, both upper and lower thermal tolerance limits increased with extreme daily temperature, suggesting that different experienced climate extremes across realms explain the patterns, as predicted under the Climate Extremes Hypothesis . Statistically accounting for methodological variation in acclimation temperature, ramping rate and exposure duration improved model fits, and increased slopes with extreme ambient temperature. Our results suggest that fundamentally different patterns of thermal limits found among the earth's realms may be largely explained by differences in episodic thermal extremes among realms, updating global macrophysiological ‘rules’. This article is part of the theme issue ‘Physiological diversity, biodiversity patterns and global climate change: testing key hypotheses involving temperature and oxygen’.
Journal Article
Enamel Formation Genes Influence Enamel Microhardness Before and After Cariogenic Challenge
2012
There is evidence for a genetic component in caries susceptibility, and studies in humans have suggested that variation in enamel formation genes may contribute to caries. For the present study, we used DNA samples collected from 1,831 individuals from various population data sets. Single nucleotide polymorphism markers were genotyped in selected genes (ameloblastin, amelogenin, enamelin, tuftelin, and tuftelin interacting protein 11) that influence enamel formation. Allele and genotype frequencies were compared between groups with distinct caries experience. Associations with caries experience can be detected but they are not necessarily replicated in all population groups and the most expressive results was for a marker in AMELX (p=0.0007). To help interpret these results, we evaluated if enamel microhardness changes under simulated cariogenic challenges are associated with genetic variations in these same genes. After creating an artificial caries lesion, associations could be seen between genetic variation in TUFT1 (p=0.006) and TUIP11 (p=0.0006) with enamel microhardness. Our results suggest that the influence of genetic variation of enamel formation genes may influence the dynamic interactions between the enamel surface and the oral cavity.
Journal Article