Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
3 result(s) for "Catchlove, Sarah J."
Sort by:
An investigation of cerebral oxygen utilization, blood flow and cognition in healthy aging
Understanding how vascular and metabolic factors impact on cognitive function is essential to develop efficient therapies to prevent and treat cognitive losses in older age. Cerebral metabolic rate of oxygen (CMRO2), cerebral blood flow (CBF) and venous oxygenation (Yv) comprise key physiologic processes that maintain optimum functioning of neural activity. Changes to these parameters across the lifespan may precede neurodegeneration and contribute to age-related cognitive decline. This study examined differences in blood flow and metabolism between 31 healthy younger (<50 years) and 29 healthy older (>50 years) adults; and investigated whether these parameters contribute to cognitive performance. Participants underwent a cognitive assessment and MRI scan. Grey matter CMRO2 was calculated from measures of CBF (phase contrast MRI), arterial and venous oxygenation (TRUST MRI) to assess group differences in physiological function and the contribution of these parameters to cognition. Performance on memory (p<0.001) and attention tasks (p<0.001) and total CBF were reduced (p<0.05), and Yv trended toward a decrease (p = .06) in the older group, while grey matter CBF and CMRO2 did not differ between the age groups. Attention was negatively associated with CBF when adjusted (p<0.05) in the older adults, but not in the younger group. There was no such relationship with memory. Neither cognitive measure was associated with oxygen metabolism or venous oxygenation in either age group. Findings indicated an age-related imbalance between oxygen delivery, consumption and demand, evidenced by a decreased supply of oxygen with unchanged metabolism resulting in increased oxygen extraction. CBF predicted attention when the age-effect was controlled, suggesting a task- specific CBF- cognition relationship.
Magnetic resonance imaging for assessment of cerebrovascular reactivity and its relationship to cognition: a systematic review
Background Cerebrovascular reactivity (CVR) refers to the responsiveness of cerebral vasculature to vasoactive stimuli. CVR is an indicator of brain health and can be assessed using vasodilatory techniques and magnetic resonance imaging (MRI). Using such approaches, some researchers have explored the relationship between CVR and cognition; here we systematically review this work. Results We extracted information pertaining to: (1) study location and design, participant characteristics, sample sizes, (2) design of vascular challenge, end-tidal CO 2 (etCO 2 ) concentrations (if applicable), (3) MRI protocol, (4) cognitive assessment, (5) CVR values, and outcomes of statistical analyses with cognitive tests. Five studies assessed participants with cognitive impairment compared to controls, one studied patients with multiple sclerosis with or without cognitive impairment compared to controls, one examined patients with moyamoya disease with or without cognitive impairment, two investigated patients with Type 2 diabetes mellitus (T2DM), and one was a cross-sectional study with younger and older healthy adults. Cognition was typically probed using the MMSE and tests of executive function, while a number of vasodilatory techniques were employed. Conclusion CVR was associated with cognition in six of ten studies, but heterogeneity of study samples, designs and vasodilatory methods may have a role in the inconsistent findings. We make recommendations for future research that includes use of a multi-domain cognitive assessment and standardised hypercapnic challenge with MRI.
Regional Cerebrovascular Reactivity and Cognitive Performance in Healthy Aging
Cerebrovascular reactivity (CVR) reflects the response of brain blood vessels to vasoactive stimuli, such as neural activity. The current research assessed age-related changes in regional CVR to 5% CO2 inhalation in younger (n = 30, range: 21-45 years) and older (n = 29, range: 55-75 years) adults, and the contribution of regional CVR to cognitive performance using blood-oxygen-level dependent contrast imaging (BOLD) functional magnetic resonance imaging (fMRI) at 3T field strength. CVR was measured by inducing hypercapnia using a block-design paradigm under physiological monitoring. Memory and attention were assessed with a comprehensive computerized aging battery. MRI data analysis was conducted using MATLAB® and SPM12. Memory and attention performance was positively associated with CVR in the temporal cortices. Temporal lobe CVR influenced memory performance independently of age, gender, and education level. When analyzing age groups separately, CVR in the hippocampus contributed significantly to memory score in the older group and was also related to subjective memory complaints. No associations between CVR and cognition were observed in younger adults. Vascular responsiveness in the brain has consequences for cognition in cognitively healthy people. These findings may inform other areas of research concerned with vaso-protective approaches for prevention or treatment of neurocognitive decline.