Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
26 result(s) for "Cater, Heather"
Sort by:
Analysis of Individual Mouse Activity in Group Housed Animals of Different Inbred Strains using a Novel Automated Home Cage Analysis System
Central nervous system disorders such as autism as well as the range of neurodegenerative diseases such as Huntington's disease are commonly investigated using genetically altered mouse models. The current system for characterizing these mice usually involves removing the animals from their home-cage environment and placing them into novel environments where they undergo a battery of tests measuring a range of behavioral and physical phenotypes. These tests are often only conducted for short periods of times in social isolation. However, human manifestations of such disorders are often characterized by multiple phenotypes, presented over long periods of time and leading to significant social impacts. Here, we have developed a system which will allow the automated monitoring of individual mice housed socially in the cage they are reared and housed in, within established social groups and over long periods of time. We demonstrate that the system accurately reports individual locomotor behavior within the group and that the measurements taken can provide unique insights into the effects of genetic background on individual and group behavior not previously recognized.
A refinement to the formalin test in mice version 2; peer review: 2 approved
The constant refinement of tests used in animal research is crucial for the scientific community. This is particularly true for the field of pain research, where ethical standards are notably sensitive. The formalin test is widely used in pain research and some of its mechanisms resemble those underlying clinical pain in humans. Immediately upon injection, formalin triggers two waves (an early and a late phase) of strong, nociceptive behaviour, characterised by licking, biting, lifting and shaking the injected paw of the animal. Although well characterised at the behaviour level, since its proposal over four decades ago, there has not been any significant refinement to the formalin test, especially those combining minimisation of animal distress and preservation of behavioural outcomes of the test.  Here, we propose a modified and improved method for the formalin test. We show that anaesthetising the animal with the inhalable anaesthetic sevoflurane at the time of the injection can produce reliable, robust and reproducible results whilst animal distress during the initial phase is reduced. Importantly, our results were validated by pharmacological suppression of the behaviour during the late phase of the test with gabapentin, the anaesthetic showing no interference with the drug. In addition, we demonstrate that this is also a useful method to screen for changes in pain behaviour in response to formalin in transgenic lines.
INFRAFRONTIER quality principles in systemic phenotyping
Improving reproducibility and replicability in preclinical research is a widely discussed and pertinent topic, especially regarding ethical responsibility in animal research. INFRAFRONTIER, the European Research Infrastructure for the generation, phenotyping, archiving, and distribution of model mammalian genomes, is addressing this issue by developing internal quality principles for its different service areas, that provides a quality framework for its operational activities. This article introduces the INFRAFRONTIER Quality Principles in Systemic Phenotyping of genetically altered mouse models. A total of 11 key principles are included, ranging from general requirements for compliance with guidelines on animal testing, to the need for well-trained personnel and more specific standards such as the exchange of reference lines. Recently established requirements such as the provision of FAIR (Findable, Accessible, Interoperable, Reusable) data are also addressed. For each quality principle, we have outlined the specific context, requirements, further recommendations, and key references.
Early embryonic lethality in complex I associated p.L104P Nubpl mutant mice
Variants in the mitochondrial complex I assembly factor, NUBPL are associated with a rare cause of complex I deficiency mitochondrial disease. Patients affected by complex I deficiency harboring homozygous NUBPL variants typically have neurological problems including seizures, intellectual disability, and ataxia associated with cerebellar hypoplasia. Thus far only 19 cases have been reported worldwide, and no treatment is available for this rare disease. To investigate the pathogenesis of NUBPL-associated complex I deficiency, and for translational studies, we generated a knock-in mouse harboring a patient-specific variant Nubpl c.311T>C; p. L104P reported in three families. Similar to Nubpl global knockout mice, the Nubpl p. L104P homozygous mice are lethal at embryonic day E10.5, suggesting that the Nubpl p. L104P variant is likely a hypomorph allele. Given the recent link between Parkinson's disease and loss-of-function NUBPL variants, we also explored aging-related behaviors and immunocytochemical changes in Nubpl hemizygous mice and did not find significant behavioral and pathological changes for alpha-synuclein and oxidative stress markers . Our data suggest that homozygotes with Nubpl variants, similar to the null mice, are lethal, and heterozygotes are phenotypically and neuropathologically normal. We propose that a tissue-specific knockout strategy is required to establish a mouse model of Nubpl-associated complex I deficiency disorder for future mechanistic and translational studies.
Analysis of motor dysfunction in Down Syndrome reveals motor neuron degeneration
Down Syndrome (DS) is caused by trisomy of chromosome 21 (Hsa21) and results in a spectrum of phenotypes including learning and memory deficits, and motor dysfunction. It has been hypothesized that an additional copy of a few Hsa21 dosage-sensitive genes causes these phenotypes, but this has been challenged by observations that aneuploidy can cause phenotypes by the mass action of large numbers of genes, with undetectable contributions from individual sequences. The motor abnormalities in DS are relatively understudied-the identity of causative dosage-sensitive genes and the mechanism underpinning the phenotypes are unknown. Using a panel of mouse strains with duplications of regions of mouse chromosomes orthologous to Hsa21 we show that increased dosage of small numbers of genes causes locomotor dysfunction and, moreover, that the Dyrk1a gene is required in three copies to cause the phenotype. Furthermore, we show for the first time a new DS phenotype: loss of motor neurons both in mouse models and, importantly, in humans with DS, that may contribute to locomotor dysfunction.
Comprehensive phenotypic analysis of the Dp1Tyb mouse strain reveals a broad range of Down syndrome-related phenotypes
Down syndrome (DS), trisomy 21, results in many complex phenotypes including cognitive deficits, heart defects and craniofacial alterations. Phenotypes arise from an extra copy of human chromosome 21 (Hsa21) genes. However, these dosage-sensitive causative genes remain unknown. Animal models enable identification of genes and pathological mechanisms. The Dp1Tyb mouse model of DS has an extra copy of 63% of Hsa21-orthologous mouse genes. In order to establish whether this model recapitulates DS phenotypes, we comprehensively phenotyped Dp1Tyb mice using 28 tests of different physiological systems and found that 468 out of 1800 parameters were significantly altered. We show that Dp1Tyb mice have wide-ranging DS-like phenotypes, including aberrant erythropoiesis and megakaryopoiesis, reduced bone density, craniofacial changes, altered cardiac function, a pre-diabetic state, and deficits in memory, locomotion, hearing and sleep. Thus, Dp1Tyb mice are an excellent model for investigating complex DS phenotype-genotype relationships for this common disorder.
Temporal development of hippocampal cell death is dependent on tissue strain but not strain rate
Deformation of brain tissue in response to mechanical loading of the head is the root-cause of traumatic brain injury (TBI). Even below ultimate failure limits, deformation activates pathophysiological cascades resulting in delayed cell death. Injury response of soft tissues, such as the chest and spinal cord, is dependent on the product of deformation and velocity, a parameter termed the viscous criterion. We set out to test if hippocampal cell death could be predicted by a similar combination of strain and strain rate and if the viscous criterion was valid for hippocampus. Quantitative prediction of the brain's biological response to mechanical stimuli is difficult to achieve in animal models of TBI, so we utilized an in vitro model of TBI based on hippocampal slice cultures. We quantified the temporal development of cell death after precisely controlled deformations for 30 combinations of strain (0.05–0.50) and strain rate (0.1–50 s −1) relevant to TBI. Loading conditions for a subset of cultures were verified by analysis of high-speed video. Cell death was found to be significantly dependent on time-post injury, on strain magnitude, and to a lesser extent, on anatomical region by a repeated-measures, three-way ANOVA. The responses of the CA1 and CA3 regions of the hippocampus were not statistically different in contrast to some in vivo TBI studies. Surprisingly, cell death was not dependent on strain rate leading us to conclude that the viscous criterion is not a valid predictor for hippocampal tissue injury. Given the large data set and extensive combinations of biomechanical parameters, predictive mathematical functions relating independent variables (strain, region, and time post-injury) to the resultant cell death were defined. These functions can be used as tolerance criteria to equip finite element models of TBI with the added capability to predict biological consequences.
Exploring the Lean Phenotype of Glutathione-Depleted Mice: Thiol, Amino Acid and Fatty Acid Profiles
Although reduced glutathione (rGSH) is decreased in obese mice and humans, block of GSH synthesis by buthionine sulfoximine (BSO) results in a lean, insulin-sensitive phenotype. Data is lacking about the effect of BSO on GSH precursors, cysteine and glutamate. Plasma total cysteine (tCys) is positively associated with stearoyl-coenzyme A desaturase (SCD) activity and adiposity in humans and animal models. To explore the phenotype, amino acid and fatty acid profiles in BSO-treated mice. Male C3H/HeH mice aged 11 weeks were fed a high-fat diet with or without BSO in drinking water (30 mmol/L) for 8 weeks. Amino acid and fatty acid changes were assessed, as well as food consumption, energy expenditure, locomotor activity, body composition and liver vacuolation (steatosis). Despite higher food intake, BSO decreased particularly fat mass but also lean mass (both P<0.001), and prevented fatty liver vacuolation. Physical activity increased during the dark phase. BSO decreased plasma free fatty acids and enhanced insulin sensitivity. BSO did not alter liver rGSH, but decreased plasma total GSH (tGSH) and rGSH (by ~70%), and liver tGSH (by 82%). Glutamate accumulated in plasma and liver. Urine excretion of cysteine and its precursors was increased by BSO. tCys, rCys and cystine decreased in plasma (by 23-45%, P<0.001 for all), but were maintained in liver, at the expense of decreased taurine. Free and total plasma concentrations of the SCD products, oleic and palmitoleic acids were decreased (by 27-38%, P <0.001 for all). Counterintuitively, block of GSH synthesis decreases circulating tCys, raising the question of whether the BSO-induced obesity-resistance is linked to cysteine depletion. Cysteine-supplementation of BSO-treated mice is warranted to dissect the effects of cysteine and GSH depletion on energy metabolism.
A scoring system for the evaluation of the mutated Crb1/rd8-derived retinal lesions in C57BL/6N mice
As part of the International Mouse Phenotyping Consortium (IMPC) programme, the MRC Harwell is conducting a large eye morphology phenotyping screen on genetically modified mice compared to the baseline phenotype observed in the background strain of C57BL/6NTac. The C57BL/6NTac strain is known to carry a spontaneous mutation in the Crb1 gene that causes retinal degeneration characterized by the presence of white spots (flecks) in the fundus. These flecks potentially represent a confounding factor, masking similar retinal phenotype abnormalities that may be detected in mutants. Therefore we investigated the frequency, position and extent of the flecks in a large population of C57BL/6NTac mice to provide the basis for evaluating the presence of flecks in mutant mice with the same genetic background. We found that in our facility males were more severely affected than females and that in both males and females the most common localisation of the flecks was in the inferior hemicycle of the fundus.
A refinement to the formalin test in mice version 1; peer review: 1 approved, 1 approved with reservations
The constant refinement of tests used in animal research is crucial for the scientific community. This is particularly true for the field of pain research, where ethical standards are notably sensitive. The formalin test is widely used in pain research and some of its mechanisms resemble those underlying clinical pain in humans. Immediately upon injection, formalin triggers two waves (an early and a late phase) of strong, nociceptive behaviour, characterised by licking, biting, lifting and shaking the injected paw of the animal. Although well characterised at the behaviour level, since its proposal over four decades ago, there has not been any significant refinement to the formalin test, especially those combining minimisation of animal distress and preservation of behavioural outcomes of the test.  Here, we propose a modified and improved method for the formalin test. We show that anaesthetising the animal with the inhalable anaesthetic sevoflurane at the time of the injection can produce reliable, robust and reproducible results whilst animal distress during the initial phase is reduced. Importantly, our results were validated by pharmacological suppression of the behaviour during the late phase of the test with gabapentin, the anaesthetic showing no interference with the drug. In addition, we demonstrate that this is also a useful method to screen for changes in pain behaviour in response to formalin in transgenic lines.