Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
10 result(s) for "Cates, Grant R"
Sort by:
The Project Assessment by Simulation Technique
Project uncertainty is present in many places including the estimates for activity durations, in the occurrence of unplanned or unforeseen events, and in the availability of critical resources. The impact can be project completion delays, increased costs, and decreased stakeholder benefit. The Project Assessment by Simulation Technique (PAST) enhances stakeholder visibility of project uncertainty, i.e., risk to project completion performance. In certain situations, this enhanced visibility may lead to improved project risk management and improved project completion performance. An engineering manager can use this article to gain insights into the PAST methodology, its use on a large complex project, and its potential benefits to project management.
Space Shuttle Launch Probability Analysis: Understanding History so We Can Predict the Future
The Space Shuttle was launched 135 times and nearly half of those launches required 2 or more launch attempts. The Space Shuttle launch countdown historical data of 250 launch attempts provides a wealth of data that is important to analyze for strictly historical purposes as well as for use in predicting future launch vehicle launch countdown performance. This paper provides a statistical analysis of all Space Shuttle launch attempts including the empirical probability of launch on any given attempt and the cumulative probability of launch relative to the planned launch date at the start of the initial launch countdown. This information can be used to facilitate launch probability predictions of future launch vehicles such as NASA's Space Shuttle derived SLS. Understanding the cumulative probability of launch is particularly important for missions to Mars since the launch opportunities are relatively short in duration and one must wait for 2 years before a subsequent attempt can begin.
Improving project management with simulation and completion distribution functions
Despite the critical importance of project completion timeliness, management practices in place today remain inadequate for addressing the persistent problem of project completion tardiness. Uncertainty has been identified as a contributing factor in late projects. This uncertainty resides in activity duration estimates, unplanned upsetting events, and the potential unavailability of critical resources. This research developed a comprehensive simulation based methodology for conducting quantitative project completion-time risk assessments. The methodology enables project stakeholders to visualize uncertainty or risk, i.e. the likelihood of their project completing late and the magnitude of the lateness, by providing them with a completion time distribution function of their projects. Discrete event simulation is used to determine a project's completion distribution function. The project simulation is populated with both deterministic and stochastic elements. Deterministic inputs include planned activities and resource requirements. Stochastic inputs include activity duration growth distributions, probabilities for unplanned upsetting events, and other dynamic constraints upon project activities. Stochastic inputs are based upon past data from similar projects. The time for an entity to complete the simulation network, subject to both the deterministic and stochastic factors, represents the time to complete the project. Multiple replications of the simulation are run to create the completion distribution function. The methodology was demonstrated to be effective for the on-going project to assemble the International Space Station. Approximately $500 million per month is being spent on this project, which is scheduled to complete by 2010. Project stakeholders participated in determining and managing completion distribution functions. The first result was improved project completion risk awareness. Secondly, mitigation options were analyzed to improve project completion performance and reduce total project cost.
Improving Project Management with Simulation and Completion Distribution Functions
Despite the critical importance of project completion timeliness, management practices in place today remain inadequate for addressing the persistent problem of project completion tardiness. A major culprit in late projects is uncertainty, which most, if not all, projects are inherently subject to. This uncertainty resides in the estimates for activity durations, the occurrence of unplanned and unforeseen events, and the availability of critical resources. In response to this problem, this research developed a comprehensive simulation based methodology for conducting quantitative project completion time risk analysis. It is called the Project Assessment by Simulation Technique (PAST). This new tool enables project stakeholders to visualize uncertainty or risk, i.e. the likelihood of their project completing late and the magnitude of the lateness, by providing them with a completion time distribution function of their projects. Discrete event simulation is used within PAST to determine the completion distribution function for the project of interest. The simulation is populated with both deterministic and stochastic elements. The deterministic inputs include planned project activities, precedence requirements, and resource requirements. The stochastic inputs include activity duration growth distributions, probabilities for events that can impact the project, and other dynamic constraints that may be placed upon project activities and milestones. These stochastic inputs are based upon past data from similar projects. The time for an entity to complete the simulation network, subject to both the deterministic and stochastic factors, represents the time to complete the project. Repeating the simulation hundreds or thousands of times allows one to create the project completion distribution function. The Project Assessment by Simulation Technique was demonstrated to be effective for the on-going NASA project to assemble the International Space Station. Approximately $500 million per month is being spent on this project, which is scheduled to complete by 2010. NASA project stakeholders participated in determining and managing completion distribution functions produced from PAST. The first result was that project stakeholders improved project completion risk awareness. Secondly, using PAST, mitigation options were analyzed to improve project completion performance and reduce total project cost.
Launch and Assembly Reliability Analysis for Mars Human Space Exploration Missions
NASA s long-range goal is focused upon human exploration of Mars. Missions to Mars will require campaigns of multiple launches to assemble Mars Transfer Vehicles in Earth orbit. Launch campaigns are subject to delays, launch vehicles can fail to place their payloads into the required orbit, and spacecraft may fail during the assembly process or while loitering prior to the Trans-Mars Injection (TMI) burn. Additionally, missions to Mars have constrained departure windows lasting approximately sixty days that repeat approximately every two years. Ensuring high reliability of launching and assembling all required elements in time to support the TMI window will be a key enabler to mission success. This paper describes an integrated methodology for analyzing and improving the reliability of the launch and assembly campaign phase. A discrete event simulation involves several pertinent risk factors including, but not limited to: manufacturing completion; transportation; ground processing; launch countdown; ascent; rendezvous and docking, assembly, and orbital operations leading up to TMI. The model accommodates varying numbers of launches, including the potential for spare launches. Having a spare launch capability provides significant improvement to mission success.
Low Earth Orbit Rendezvous Strategy for Lunar Missions
On January 14, 2004 President George W. Bush announced a new Vision for Space Exploration calling for NASA to return humans to the moon. In 2005 NASA decided to use a Low Earth Orbit (LEO) rendezvous strategy for the lunar missions. A Discrete Event Simulation (DES) based model of this strategy was constructed. Results of the model were then used for subsequent analysis to explore the ramifications of the LEO rendezvous strategy.
Promote HIV Chemoprophylaxis Research, Don't Prevent It
Preexposure chemoprophylaxis (PrEP) is a promising approach to HIV-1 prevention that warrants clinical evaluation, especially in regions of the world hit hardest by the epidemic. Controversy has arisen that highlights the needs of high-risk populations who frequently have limited access to information and medical care. The authors of this Policy Forum recommend involvement of community leaders and local investigators early in the development of research projects, open communication of accurate information about research, and active development of prevention and treatment infrastructure, which all serve to build the community trust that is the basis for research into finding ways to stop the spread of HIV/AIDS.