Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
214 result(s) for "Cattani, Carlo"
Sort by:
Haar wavelet fractional derivative
In this paper, the fundamental properties of fractional calculus are discussed with the aim of extending the definition of fractional operators by using wavelets. The Haar wavelet fractional operator is defined, in a more general form, independently on the kernel of the fractional integral.
Fractals and Hidden Symmetries in DNA
This paper deals with the digital complex representation of a DNA sequence and the analysis of existing correlations by wavelets. The symbolic DNA sequence is mapped into a nonlinear time series. By studying this time series the existence of fractal shapes and symmetries will be shown. At first step, the indicator matrix enables us to recognize some typical patterns of nucleotide distribution. The DNA sequence, of the influenza virus A (H1N1), is investigated by using the complex representation, together with the corresponding walks on DNA; in particular, it is shown that DNA walks are fractals. Finally, by using the wavelet analysis, the existence of symmetries is proven.
Fractional Calculus and Shannon Wavelet
An explicit analytical formula for the any order fractional derivative of Shannon wavelet is given as wavelet series based on connection coefficients. So that for any L2(ℝ) function, reconstructed by Shannon wavelets, we can easily define its fractional derivative. The approximation error is explicitly computed, and the wavelet series is compared with Grünwald fractional derivative by focusing on the many advantages of the wavelet method, in terms of rate of convergence.
Cantor Waves for Signorini Hyperelastic Materials with Cylindrical Symmetry
In this paper, local fractional cylindrical wave solutions on Signorini hyperelastic materials are studied. In particular, we focus on the so-called Signorini potential. Cantor-type cylindrical coordinates are used to analyze, both from dynamical and geometrical point of view, wave solutions, so that the nonlinear fundamental equations of the fractional model are explicitly given. In the special case of linear approximation we explicitly compute the fractional wave profile.
Shannon Wavelets Theory
Shannon wavelets are studied together with their differential properties (known as connection coefficients). It is shown that the Shannon sampling theorem can be considered in a more general approach suitable for analyzing functions ranging in multifrequency bands. This generalization coincides with the Shannon wavelet reconstruction of L 2 ( ℝ ) functions. The differential properties of Shannon wavelets are also studied through the connection coefficients. It is shown that Shannon wavelets are C ∞ ‐functions and their any order derivatives can be analytically defined by some kind of a finite hypergeometric series. These coefficients make it possible to define the wavelet reconstruction of the derivatives of the C ℓ ‐functions.
Shannon Wavelets for the Solution of Integrodifferential Equations
Shannon wavelets are used to define a method for the solution of integrodifferential equations. This method is based on (1) the Galerking method, (2) the Shannon wavelet representation, (3) the decorrelation of the generalized Shannon sampling theorem, and (4) the definition of connection coefficients. The Shannon sampling theorem is considered in a more general approach suitable for analysing functions ranging in multifrequency bands. This generalization coincides with the Shannon wavelet reconstruction of L2(ℝ) functions. Shannon wavelets are C∞-functions and their any order derivatives can be analytically defined by some kind of a finite hypergeometric series (connection coefficients).
The dynamics of COVID-19 in the UAE based on fractional derivative modeling using Riesz wavelets simulation
The well-known novel virus (COVID-19) is a new strain of coronavirus family, declared by the World Health Organization (WHO) as a dangerous epidemic. More than 3.5 million positive cases and 250 thousand deaths (up to May 5, 2020) caused by COVID-19 and has affected more than 280 countries over the world. Therefore studying the prediction of this virus spreading in further attracts a major public attention. In the Arab Emirates (UAE), up to the same date, there are 14,730 positive cases and 137 deaths according to national authorities. In this work, we study a dynamical model based on the fractional derivatives of nonlinear equations that describe the outbreak of COVID-19 according to the available infection data announced and approved by the national committee in the press. We simulate the available total cases reported based on Riesz wavelets generated by some refinable functions, namely the smoothed pseudosplines of types I and II with high vanishing moments. Based on these data, we also consider the formulation of the pandemic model using the Caputo fractional derivative. Then we numerically solve the nonlinear system that describes the dynamics of COVID-19 with given resources based on the collocation Riesz wavelet system constructed. We present graphical illustrations of the numerical solutions with parameters of the model handled under different situations. We anticipate that these results will contribute to the ongoing research to reduce the spreading of the virus and infection cases.
Local Fractional Homotopy Perturbation Method for Solving Non-Homogeneous Heat Conduction Equations in Fractal Domains
In this article, the local fractional Homotopy perturbation method is utilized to solve the non-homogeneous heat conduction equations. The operator is considered in the sense of the local fractional differential operator. Comparative results between non-homogeneous and homogeneous heat conduction equations are presented. The obtained result shows the non-differentiable behavior of heat conduction of the fractal temperature field in homogeneous media.
Fractal Logistic Equation
In this paper, we give difference equations on fractal sets and their corresponding fractal differential equations. An analogue of the classical Euler method in fractal calculus is defined. This fractal Euler method presets a numerical method for solving fractal differential equations and finding approximate analytical solutions. Fractal differential equations are solved by using the fractal Euler method. Furthermore, fractal logistic equations and functions are given, which are useful in modeling growth of elements in sciences including biology and economics.
Multifractional Brownian Motion and Quantum-Behaved Partial Swarm Optimization for Bearing Degradation Forecasting
Gradual degradation of the bearing vibration signal is usually studied as a nonstationary stochastic time series. Roller bearings are working at high speed in a heavy load environment so that the combination of bearing faults gradually degraded during the rotation might lead to unpredicted catastrophic accidents. The degradation process has the property of long-range dependence (LRD), so that the fractional Brownian motion (fBm) is taken into account for a prediction model. Because of the dramatic changes in the bearing degradation process, the Hurst exponent that describes the fBm will change during the degradation process. A priori Hurst value of the conventional fBm in the prediction is fixed, thus inducing a minor accuracy of the prediction. To avoid this problem, we propose an improved prediction method. Based on the following steps, at the initial data processing, a skip-over factor is selected as the characteristics parameter of the bearing degradation process. A multifractional Brownian motion (mfBm) replaces the fBm for the degradation modeling. We will show that also our mfBm has the same property of long-range dependence as the fBm. Moreover, a time-varying Hurst exponent H(t) is taken to replace the constant H in fBm. Finally, we apply the quantum-behaved partial swarm optimization (QPSO) to optimize H(t) for a finite interval. Some tests and corresponding experimental results will show that our model QPSO + mfBm have a much better performance on the prediction effect than fBm.