Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
9 result(s) for "Caul, Sandra"
Sort by:
Plant lignin content altered by soil microbial community
Questions have been raised in various fields of research about the consequences of plants with modified lignin production. As a result of their roles in nutrient cycling and plant diversity, plant–soil interactions should be a major focus of ecological studies on lignin‐modified plants. However, most studies have been decomposition studies conducted in a single soil or in sterile soil. Thus, we understand little about plant–soil interactions in living lignin‐modified plants. In lignin mutants of three different barley (Hordeum vulgare) cultivars and their corresponding wild‐types associated with three different soil microbial communities, we asked: do plant–soil microbiome interactions influence the lignin content of plants?; does a mutation in lignin production alter the outcome of plant–soil microbiome interactions?; does the outcome of plant–soil microbiome interactions depend on host genotype or the presence of a mutation altering lignin production? In roots, the soil community explained 6% of the variation in lignin content, but, in shoots, the soil community explained 21% of the variation in lignin content and was the only factor influencing lignin content. Neither genotype nor mutations in lignin production explained associations with fungi. Lignin content changes in response to a plant's soil microbial community, and may be a defensive response to particular components of the soil community.
Early Root Herbivory Impairs Arbuscular Mycorrhizal Fungal Colonization and Shifts Defence Allocation in Establishing Plantago lanceolata
Research into plant-mediated indirect interactions between arbuscular mycorrhizal (AM) fungi and insect herbivores has focussed on those between plant shoots and above-ground herbivores, despite the fact that only below-ground herbivores share the same part of the host plant as AM fungi. Using Plantago lanceolata L., we aimed to characterise how early root herbivory by the vine weevil (Otiorhynchus sulcatus F.) affected subsequent colonization by AM fungi (Glomus spp.) and determine how the two affected plant growth and defensive chemistry. We exposed four week old P. lanceolata to root herbivory and AM fungi using a 2×2 factorial design (and quantified subsequent effects on plant biomass and iridoid glycosides (IGs) concentrations. Otiorhynchus sulcatus reduced root growth by c. 64%, whereas plant growth was unaffected by AM fungi. Root herbivory reduced extent of AM fungal colonization (by c. 61%). O. sulcatus did not influence overall IG concentrations, but caused qualitative shifts in root and shoot IGs, specifically increasing the proportion of the more toxic catalpol. These changes may reflect defensive allocation in the plant against further attack. This study demonstrates that very early root herbivory during plant development can shape future patterns of AM fungal colonization and influence defensive allocation in the plant.
Distribution of soil carbon and microbial biomass in arable soils under different tillage regimes
We have measured total soil organic carbon (SOC), dissolved organic carbon (DOC), and microbial lipid contents (as indices of microbial biomass and community structure), and their distributions to 60 cm depth in soils from replicated medium-term (2003-2008) experimental arable plots subject to different tillage regimes in Scotland. The treatments were zero tillage (ZT), minimum tillage (MT; cultivation to 7 cm), the conventional tillage (CT) practice of ploughing to 20 cm, and deep ploughing (DP) to 40 cm depth. In the 0-30 cm depth range, SOC content (corrected for bulk density differences between tillage treatments) was greatest under ZT and MT, but over 0-60 cm depth the SOC contents of these treatments were similar to the CT and DP treatments. DOC concentrations declined with increasing depth in ZT and MT above 20 cm, but there were no significant differences with depth in the CT and DP treatments. Beneath 20 cm, there was little change in DOC concentration with depth for all treatments, although for the MT treatment, there was less DOC beneath the depth of cultivation. The total microbial biomass decreased with increasing depth over the 0-60 cm range in the ZT and MT treatments, whereas it decreased with depth only below 30-40 cm in the CT and DP treatments. The microbial biomass was significantly different only between 0-5 cm in the ZT, CT and DP treatments, but not for other depths between all treatments. The bacterial biomass was greater in the ZT treatment than in MT, CT and DP near the soil surface, but not significantly different over the whole profile (0-60 cm). The fungal biomass decreased with depth in the ZT and MT treatments over the whole 0-60 cm depth range, whereas it decreased with depth only below 20 cm in the CT and DP treatments.
Soil Microbial and Faunal Community Responses to Bt Maize and Insecticide in Two Soils
The effects of maize (Zea mays L.), genetically modified to express the Cry1Ab protein (Bt), and an insecticide on soil microbial and faunal communities were assessed in a glasshouse experiment. Soil for the experiment was taken from field sites where the same maize cultivars were grown to allow comparison between results under glasshouse conditions with those from field trials. Plants were grown in contrasting sandy loam and clay loam soils, half were sprayed with a pyrethroid insecticide (deltamethrin) and soil samples taken at the five-leaf stage, flowering, and maturity. The main effect on all measured parameters was that of soil type and there were no effects of Bt trait or insecticide on plant growth. The Bt trait resulted in more soil nematodes and protozoa (amoebae), whereas insecticide application increased plant Bt concentration and altered nematode community structure. The only significant effects on soil microbial community structure, microarthropods, and larvae of a nontarget root-feeding Dipteran, were due to soil type and plant growth stage. The results indicate that, although there were statistically significant effects of the Bt trait on soil populations, they were small. The relative magnitude of the effect could best be judged by comparison with the insecticide treatment, which was representative of current best practice. The Bt trait had no greater effect than the insecticide treatment. Results from this glasshouse experiment were in broad agreement with conclusions from field experiments using the same plant material grown in the same soils.
Distribution of soil carbon and microbial biomass in arable soils under different tillage regimes
We have measured total soil organic carbon (SOC), dissolved organic carbon (DOC), and microbial lipid contents (as indices of microbial biomass and community structure), and their distributions to 60 cm depth in soils from replicated medium-term (2003-2008) experimental arable plots subject to different tillage regimes in Scotland. The treatments were zero tillage (ZT), minimum tillage (MT; cultivation to 7 cm), the conventional tillage (CT) practice of ploughing to 20 cm, and deep ploughing (DP) to 40 cm depth. In the 0-30 cm depth range, SOC content (corrected for bulk density differences between tillage treatments) was greatest under ZT and MT, but over 0-60 cm depth the SOC contents of these treatments were similar to the CT and DP treatments. DOC concentrations declined with increasing depth in ZT and MT above 20 cm, but there were no significant differences with depth in the CT and DP treatments. Beneath 20 cm, there was little change in DOC concentration with depth for all treatments, although for the MT treatment, there was less DOC beneath the depth of cultivation. The total microbial biomass decreased with increasing depth over the 060 cm range in the ZT and MT treatments, whereas it decreased with depth only below 30-40 cm in the CT and DP treatments. The microbial biomass was significantly different only between 0-5 cm in the ZT, CT and DP treatments, but not for other depths between all treatments. The bacterial biomass was greater in the ZT treatment than in MT, CT and DP near the soil surface, but not significantly different over the whole profile (0-60 cm). The fungal biomass decreased with depth in the ZT and MT treatments over the whole 0-60 cm depth range, whereas it decreased with depth only below 20 cm in the CT and DP treatments.
Early Root Herbivory Impairs Arbuscular Mycorrhizal Fungal Colonization and Shifts Defence Allocation in Establishing Plantago lanceolata: e66053
Research into plant-mediated indirect interactions between arbuscular mycorrhizal (AM) fungi and insect herbivores has focussed on those between plant shoots and above-ground herbivores, despite the fact that only below-ground herbivores share the same part of the host plant as AM fungi. Using Plantago lanceolata L., we aimed to characterise how early root herbivory by the vine weevil (Otiorhynchus sulcatus F.) affected subsequent colonization by AM fungi (Glomus spp.) and determine how the two affected plant growth and defensive chemistry. We exposed four week old P. lanceolata to root herbivory and AM fungi using a 22 factorial design (and quantified subsequent effects on plant biomass and iridoid glycosides (IGs) concentrations. Otiorhynchus sulcatus reduced root growth by c. 64%, whereas plant growth was unaffected by AM fungi. Root herbivory reduced extent of AM fungal colonization (by c. 61%). O. sulcatus did not influence overall IG concentrations, but caused qualitative shifts in root and shoot IGs, specifically increasing the proportion of the more toxic catalpol. These changes may reflect defensive allocation in the plant against further attack. This study demonstrates that very early root herbivory during plant development can shape future patterns of AM fungal colonization and influence defensive allocation in the plant.
Soil Microbial and Faunal Community Responses to Bt Maize and Insecticide in Two Soils
The effects of maize (Zea mays L.), genetically modified to express the Cry1Ab protein (Bt), and an insecticide on soil microbial and faunal communities were assessed in a glasshouse experiment. Soil for the experiment was taken from field sites where the same maize cultivars were grown to allow comparison between results under glasshouse conditions with those from field trials. Plants were grown in contrasting sandy loam and clay loam soils, half were sprayed with a pyrethroid insecticide (deltamethrin) and soil samples taken at the five-leaf stage, flowering, and maturity. The main effect on all measured parameters was that of soil type and there were no effects of Bt trait or insecticide on plant growth. The Bt trait resulted in more soil nematodes and protozoa (amoebae), whereas insecticide application increased plant Bt concentration and altered nematode community structure. The only significant effects on soil microbial community structure, microarthropods, and larvae of a nontarget root-feeding Dipteran, were due to soil type and plant growth stage. The results indicate that, although there were statistically significant effects of the Bt trait on soil populations, they were small. The relative magnitude of the effect could best be judged by comparison with the insecticide treatment, which was representative of current best practice. The Bt trait had no greater effect than the insecticide treatment. Results from this glasshouse experiment were in broad agreement with conclusions from field experiments using the same plant material grown in the same soils.