Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
20 result(s) for "Cavalca, L."
Sort by:
Evaluation of the Thermal Effects in Tilting Pad Bearing
The analysis of thermal effects is of expressive importance in the context of rotordynamics to evaluate the behavior of hydrodynamic bearings because these effects can influence their dynamic characteristics under specific operational conditions. For this reason, a thermohydrodynamic model is developed in this work, in which the pressure distribution in the oil film and the temperature distribution are calculated together. From the pressure distribution, the velocity distribution field is determined, as well as the viscous dissipation, and consequently, the temperature distribution. The finite volume method is applied to solve the Reynolds equation and the energy equation in the thermohydrodynamic model (THD). The results show that the temperature is higher as the rotational speed increases due to the shear rate of the oil film. The maximum temperature in the bearing occurs in the overloaded pad, near the outlet boundary. The experimental tests were performed in a tilting pad journal bearing operating in a steam turbine to validate the model. The comparison between the experimental and numerical results provides a good correlation. The thermohydrodynamic lubrication developed in this assignment is promising to consistently evaluate the behavior of the tilting pad journal bearing operating in relatively high rotational speeds.
Intrinsic bioremediability of an aromatic hydrocarbon-polluted groundwater: diversity of bacterial population and toluene monoxygenase genes
The functional and phylogenetic biodiversity of bacterial communities in a benzene, toluene, ethylbenzene and xylene (BTEX)-polluted groundwater was analysed. To evaluate the feasibility of using an air sparging treatment to enhance bacterial degradative capabilities, the presence of degrading microorganisms was monitored. The amplification of gene fragments corresponding to toluene monooxygenase (tmo), catechol 1,2-dioxygenase, catechol 2,3-dioxygenase and toluene dioxygenase genes in DNA extracted directly from the groundwater samples was associated with the presence of indigenous degrading bacteria. Five months of air injection reduced species diversity in the cultivable community (as calculated by the Shannon-Weaver index), while little change was noted in the degree of biodiversity in the total bacterial community, as characterised by denaturing gradient gel electrophoresis (DGGE) analysis. BTEX-degrading strains belonged to the genera Pseudomonas, Microbacterium, Azoarcus, Mycobacterium and Bradyrhizobium. The degrading capacities of three strains in batch liquid cultures were also studied. In some of these microorganisms different pathways for toluene degradation seemed to operate simultaneously. Pseudomonas strains of the P24 operational taxonomic unit, able to grow only on catechol and not on BTEX, were the most abundant, and were present in the groundwater community at all stages of treatment, as evidenced both by cultivation approaches and by DGGE profiles. The presence of different tmo-like genes in phylogenetically distant strains of Pseudomonas, Mycobacterium and Bradyrhizobium suggested recent horizontal gene transfer in the groundwater.
Analysis of rhizobacterial communities in perennial Graminaceae from polluted water meadow soil, and screening of metal-resistant, potentially plant growth-promoting bacteria
This study investigates the impact of long-term heavy metal contamination on the culturable, heterotrophic, functional and genetic diversity of rhizobacterial communities of perennial grasses in water meadow soil. The culturable heterotrophic diversity was investigated by colony appearance on solid LB medium. Genetic diversity was measured as bands in denaturing gradient gel electrophoresis (DGGE) obtained directly from rhizosphere soil and rhizoplane DNA extracts, and from the corresponding culturable communities. In the two rhizospheric fractions the DGGE profiles of the direct DNA extracts were similar and stable among replicates, whereas in the enriched cultures the profiles of the fractions differed, but among the replicates they were similar. One hundred isolates were collected into 33 different operational taxonomic units by use of amplified internal transcribed spacers and into 19 heavy metal-resistant phenotypes. The phylogenetic position of strains belonging to 18 operational taxonomic units, representing more than 80% of the isolates, was determined by 16S rRNA gene sequencing. Several heavy metal-resistant strains were isolated from rhizoplane. Finally, metal-resistant rhizobacteria were tested for plant growth-promoting characteristics; some were found to contain 1-aminocyclopropane-1-carboxylic acid deaminase and/or to produce indole acetic acid and siderophores. Two strains resistant to cadmium and zinc, Pseudomonas tolaasii RP23 and Pseudomonas fluorescens RS9, had all three plant growth-promoting characteristics. Our findings suggest that bacteria can respond to soil metal contamination, and the described methodological approach appears promising for targeting potential plant growth-promoting rhizobacteria.
Diversity of tfdC genes: distribution and polymorphism among 2,4 dichlorophenoxyacetic acid degrading soil bacteria
The aim of the present work was to study the occurrence distribution and diversity of 1,2-dichlorocatechol dioxygenase genes among 2,4-dichlorophenoxyacetic acid degrading bacteria. Phylogenetic relationships between the 31 strains or isolates were evaluated by amplified ribosomal DNA restriction analysis of the 16S rDNA gene. All the strains could be assigned to the beta or gamma subdivisions of the Proteobacteria. tfdC genes were detected by PCR amplification using degenerated primers. Two specific probes were produced from Ralstonia eutropha strain JMP134 and from a soil isolate strain PLAE6 which was grouped with Variovorax paradoxus. Sequence analysis of the probes revealed that they were homologous to the tfdC genes of JMP134 located on plasmid pJP4 and to the tfdC gene of Pseudomonas putida strain PaW85 located on plasmid pEST4011. The localization and the copy number of tfdC genes were determined by hybridization of plasmid profiles and genomic DNA restriction fragment length polymorphism profiles with the two probes. Most of the strains were found to bear tfdC genes on plasmids ranging from 78 to 532 kb; two strains without any plasmids were also found to hybridize with the probes, revealing a chromosomal localization of catabolic genes. Sequence analysis of the PCR products from different strains confirmed that four dilferent classes of chlorocatechol 1,2-dioxygenase genes were present in the strains and isolates studied.
Chlorophenol removal from soil suspensions: Effects of a specialised microbial inoculum and a degradable analogue
Two soils of different contamination history were tested in slurry for their self-remediability towards mono-, di- and trisubstituted chlorophenols. The landfill soil showed poor ability in removing the compounds. Instead, the soil from the golf course, treated for many years with a 2,4,6-trichlorophenol derivative (Prochloraz), remediated different concentrations of the same 2,4,6TCP, 2,4-dichlorophenol and monochlorophenol isomers, singly and in mixtures, at varying degradation rates. Ralstonia eutropha TCP, a specialised microorganism capable of degrading 2,4,6TCP, proved highly efficient in removing the compound from both tested soils. The same microbial inoculum allowed total removal of the ternary mixture of monochlorophenol isomers from the golf course soil, but it did not accelerate the removal of the same compounds when singly supplied. The addition of phenol as a degradable analogue was more effective in co-metabolically removing not only the single monochlorophenols, but also their mixtures, the removal occurring faster and independently of the presence of the microbial inoculum. From the golf course soil, a microorganism, phenotypically and genetically identical to R. eutropha TCP, was isolated and classified as R. eutropha TCP II.
Genotypic Characterization and Phylogenetic Relations of Pseudomonas sp. (Formerly P. stutzeri) OX1
Pseudomonas sp. OX1, an aromatic compound-degrading bacterium that was tentatively identified by conventional biochemical methods as P. stutzeri, has now been investigated at the molecular level to clarify its taxonomic position. Amplified ribosomal DNA restriction analysis and multiple enzyme restriction fragment length polymorphism (MERFLP) analysis suggested that Pseudomonas sp. OX1 could not be classified as P. stutzeri. Phylogenetic analyses based on 16S rRNA and gyrB genes further confirmed that this strain belongs to the Pseudomonas (sensu stricto) genus, but not to the stutzeri species. The data obtained demonstrated that Pseudomonas sp. OX1 belongs to intrageneric cluster II and is related to the P. fluorescens-P. syringae complex.
Diversity of tfdC genes: distribution and polymorphism among 2,4-dichlorophenoxyacetic acid degrading soil bacteria
The aim of the present work was to study the occurrence, distribution and diversity of 1,2-dichlorocatechol dioxygenase genes among 2,4-dichlorophenoxyacetic acid degrading bacteria. Phylogenetic relationships between the 31 strains or isolates were evaluated by amplified ribosomal DNA restriction analysis of the 16S rDNA gene. All the strains could be assigned to the β or γ subdivisions of the Proteobacteria. tfdC genes were detected by PCR amplification using degenerated primers. Two specific probes were produced from Ralstonia eutropha strain JMP134 and from a soil isolate strain PLAE6 which was grouped with Variovorax paradoxus. Sequence analysis of the probes revealed that they were homologous to the tfdC genes of JMP134 located on plasmid pJP4 and to the tfdC gene of Pseudomonas putida strain PaW85 located on plasmid pEST4011. The localization and the copy number of tfdC genes were determined by hybridization of plasmid profiles and genomic DNA restriction fragment length polymorphism profiles with the two probes. Most of the strains were found to bear tfdC genes on plasmids ranging from 78 to 532 kb; two strains without any plasmids were also found to hybridize with the probes, revealing a chromosomal localization of catabolic genes. Sequence analysis of the PCR products from different strains confirmed that four different classes of chlorocatechol 1,2-dioxygenase genes were present in the strains and isolates studied.
Identification of a putative LPS-associated cation exporter from Rhizobium leguminosarum bv. viciae
A gene, cpaA, with similarity to calcium proton antiporters has been identified adjacent to lpcAB in Rhizobium leguminosarum. LpcA is a galactosyl transfererase while LpcB is a 2-keto-3-deoxyoctonate transfererase, both of which are required to form the lipopolysaccharide (LPS) core in R. leguminosarum. Mutations in lpcAB result in a rough LPS phenotype with a requirement for elevated calcium concentrations to allow growth, suggesting that truncation of the LPS core exposes a highly negatively charged molecule. This is consistent with the LPS core being one of the main sites for binding calcium in the Gram-negative outer membrane. Strain RU1109 (cpa::Tn5-lacZ) has a normal LPS layer, as measured by silver staining and Western blotting. This indicates that cpaA mutants are not grossly affected in their LPS layer. LacZ fusion analysis indicates that cpaA is constitutively expressed and is not directly regulated by the calcium concentration. Over-expression of cpaA increased the concentration of calcium required for growth, consistent with CpaA mediating calcium export from the cytosol. The location of lpcA, lpcB and cpaA as well as the phenotype of lpcB mutants suggests that CpaA might provide a specific export pathway for calcium to the LPS core.