Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
19 result(s) for "Cecchini, Micael A."
Sort by:
Impacts of the Manaus pollution plume on the microphysical properties of Amazonian warm-phase clouds in the wet season
The remote atmosphere over the Amazon can be similar to oceanic regions in terms of aerosol conditions and cloud type formations. This is especially true during the wet season. The main aerosol-related disturbances over the Amazon have both natural sources, such as dust transport from Africa, and anthropogenic sources, such as biomass burning or urban pollution. The present work considers the impacts of the latter on the microphysical properties of warm-phase clouds by analysing observations of the interactions between the Manaus pollution plume and its surroundings, as part of the GoAmazon2014/5 Experiment. The analysed period corresponds to the wet season (specifically from February to March 2014 and corresponding to the first Intensive Operating Period (IOP1) of GoAmazon2014/5). The droplet size distributions reported are in the range 1 µm ≤ D ≤ 50 µm in order to capture the processes leading up to the precipitation formation. The wet season largely presents a clean background atmosphere characterized by frequent rain showers. As such, the contrast between background clouds and those affected by the Manaus pollution can be observed and detailed. The focus is on the characteristics of the initial microphysical properties in cumulus clouds predominantly at their early stages. The pollution-affected clouds are found to have smaller effective diameters and higher droplet number concentrations. The differences range from 10 to 40 % for the effective diameter and are as high as 1000 % for droplet concentration for the same vertical levels. The growth rates of droplets with altitude are slower for pollution-affected clouds (2.90 compared to 5.59 µm km−1), as explained by the absence of bigger droplets at the onset of cloud development. Clouds under background conditions have higher concentrations of larger droplets (> 20 µm) near the cloud base, which would contribute significantly to the growth rates through the collision–coalescence process. The overall shape of the droplet size distribution (DSD) does not appear to be predominantly determined by updraught strength, especially beyond the 20 µm range. The aerosol conditions play a major role in that case. However, the updraughts modulate the DSD concentrations and are responsible for the vertical transport of water in the cloud. The larger droplets found in background clouds are associated with weak water vapour competition and a bimodal distribution of droplet sizes in the lower levels of the cloud, which enables an earlier initiation of the collision–coalescence process. This study shows that the pollution produced by Manaus significantly affects warm-phase microphysical properties of the surrounding clouds by changing the initial DSD formation. The corresponding effects on ice-phase processes and precipitation formation will be the focus of future endeavours.
A Multi-Year Study of GOES-13 Droplet Effective Radius Retrievals for Warm Clouds over South America and Southeast Pacific
Geostationary satellites can retrieve the cloud droplet effective radius (re) but suffer biases from cloud inhomogeneities, internal retrieval nonlinearities, and 3-D scattering/shadowing from neighboring clouds, among others. A 1-D retrieval method was applied to Geostationary Operational Environmental Satellite 13 (GOES-13) imagery, over large areas in South America (5∘ N–30∘ S; 20∘–70∘ W), the Southeast Pacific (5∘ N–30∘ S; 70∘–120∘ W), and the Amazon (2∘ N–7∘ S; 54∘–73∘ W), for four months in each year from 2014–2017. Results were compared against in situ aircraft measurements and the Moderate Resolution Imaging Spectroradiometer cloud product for Terra and Aqua satellites. Monthly regression parameters approximately followed a seasonal pattern. With up to 108,009 of matchups, slope, intercept, and correlation for Terra (Aqua) ranged from about 0.71 to 1.17, −2.8 to 2.5 μm, and 0.61 to 0.91 (0.54 to 0.78, −1.5 to 1.8 μm, 0.63 to 0.89), respectively. We identified evidence for re overestimation (underestimation) correlated with shadowing (enhanced reflectance) in the forward (backscattering) hemisphere, and limitations to illumination and viewing configurations accessible by GOES-13, depending on the time of day and season. A proposition is hypothesized to ameliorate 3-D biases by studying relative illumination and cloud spatial inhomogeneity.
Exploring the Composited T-28 Hailstorm Penetration Dataset to Characterize Hail Properties within the Updraft and Downdraft Regions
Measurements from the South Dakota School of Mines and Technology T-28 hail-penetrating aircraft are analyzed using recently developed data processing techniques with the goals of identifying where the large hail is found relative to vertical motion and improving the detection of hail microphysical properties from radar. Hail particle size distributions (PSD) and environmental conditions (temperature, relative humidity, liquid water content, air vertical velocity) were digitally collected by the T28 between 1995 and 2003 and synthesized by Detwiler et al. The PSD were forward modeled by Cecchini et al. to simulate the radar reflectivity of the PSD at multiple radar wavelengths. The T-28 penetrated temperatures primarily between 0° and -10°C. The largest hailstones were sampled near the updraft/downdraft interface. Liquid water contents were highest in the updraft cores, whereas total (liquid + frozen) water contents were highest near the updraft/downdraft interface. The fitted properties of the PSD (intercept and slope) are directly related to each other but do not show any dependence on the region of the hailstorm where sampled. The PSD measurements and the radar reflectivity calculations at multiple radar wavelengths facilitated the development of relationships between the PSD bulk properties—hail kinetic energy and kinetic energy flux—and the radar reflectivity. Rather than using the oft-assumed sphericity and solid ice physical properties, actual measurements of hail properties are used in the analysis. Results from the maximum estimated size of hail (MESH) and vertical integrated liquid water (VIL) algorithms are evaluated based on this analysis.
How weather events modify aerosol particle size distributions in the Amazon boundary layer
This study evaluates the effect of weather events on the aerosol particle size distribution (PSD) at the Amazon Tall Tower Observatory (ATTO). This research combines in situ measurements of PSD and remote sensing data of lightning density, brightness temperature, cloud top height, cloud liquid water, and rain rate and vertical velocity. Measurements were obtained by scanning mobility particle sizers (SMPSs), the new generation of GOES satellites (GOES-16), the SIPAM S-band radar and the LAP 3000 radar wind profiler recently installed at the ATTO-Campina site. The combined data allow exploring changes in PSD due to different meteorological processes. The average diurnal cycle shows a higher abundance of ultrafine particles (NUFP) in the early morning, which is coupled with relatively lower concentrations in Aitken (NAIT) and accumulation (NACC) mode particles. From the early morning to the middle of the afternoon, an inverse behavior is observed, where NUFP decreases and NAIT and NACC increase, reflecting a typical particle growth process. Composite figures show an increase of NUFP before, during and after lightning was detected by the satellite above ATTO. These findings strongly indicate a close relationship between vertical transport and deep convective clouds. Lightning density is connected to a large increase in NUFP, beginning approximately 100 min before the maximum lightning density and reaching peak values around 200 min later. In addition, the removal of NACC by convective transport was found. Both the increase in NUFP and the decrease in NACC appear in parallel with the increasing intensity of lightning activity. The NUFP increases exponentially with the thunderstorm intensity. In contrast, NAIT and NACC show a different behavior, decreasing from approximately 100 min before the maximum lightning activity and reaching a minimum at the time of maximum lightning activity. The effect of cloud top height, cloud liquid water and rain rate shows the same behavior, but with different patterns between seasons. The convective processes do not occur continually but are probably modulated by gravity waves in the range of 1 to 5 h, creating a complex mechanism of interaction with a succession of updrafts and downdrafts, clouds, and clear-sky situations. The radar wind profiler measured the vertical distribution of the vertical velocity. These profiles show that downdrafts are mainly located below 10 km, while aircraft observations during the ACRIDICON–CHUVA campaign had shown maximum concentrations of ultrafine particles mainly above 10 km. Our study opens new scientific questions to be evaluated in order to understand the intricate physical and chemical mechanisms involved in the production of new particles in Amazonia.
Revisiting the Hail Radar Reflectivity–Kinetic Energy Flux Relation by Combining T-Matrix and Discrete Dipole Approximation Calculations to Size Distribution Observations
The retrieval of hail kinetic energy with weather radars or its simulation in numerical models is challenging because of the shape complexity and variable density of hailstones. We combine 3D scans of individual hailstones with measurements of the particle size distributions (PSD) and T-matrix calculations to understand how hail reflectivity Z changes when approximating hailstones as spheroids, as compared to the realistic shapes obtained by 3D scanning technology. Additionally, recent terminal velocity relations are used to compare Z to the hail kinetic energy flux . We parameterize the hail backscattering cross sections at L, S, C, and X bands as a function of size between 0.5 and 5.0 cm, matching the range of the observed PSDs. The scattering calculations use the T-matrix method for size parameters below 1.0 and the discrete dipole approximation (DDA) method otherwise. The DDA calculations are done for 48 digital models of realistic hailstones of sizes between 1 and 5 cm. The DDA cross sections are calculated for multiple orientations and averaged assuming a fully random orientation distribution to provide a single value per hailstone. The T-matrix reflectivity assuming solid ice spheres presents negligible differences to DDA results for size parameters below 1.0. Therefore, T matrix was used to fill in the gaps left by the DDA calculations. The results are mapped to the same size bins of the observed PSDs, allowing the calculation of the radar reflectivity. This is then correlated to , allowing a potential improvement of past retrieval methods of from Z in multiple wavelengths.
Vertically resolved aerosol variability at the Amazon Tall Tower Observatory under wet-season conditions
The wet-season atmosphere in the central Amazon resembles natural conditions with minimal anthropogenic influence, making it one of the rare preindustrial-like continental areas worldwide. Previous long-term studies have analyzed the properties and sources of the natural Amazonian background aerosol. However, the vertical profile of the planetary boundary layer (PBL) has not been assessed systematically. Since 2017, such a profile assessment has been possible with the 325 m high tower at the Amazon Tall Tower Observatory (ATTO), located in a largely untouched primary forest in the central Amazon. This study investigates the variability of submicrometer aerosol concentration, size distribution, and optical properties at 60 and 325 m in the Amazonian PBL. The results show significant differences in aerosol volumes and scattering coefficients in the vertical gradient. The aerosol population was well-mixed throughout the boundary layer during the daytime but became separated upon stratification during the nighttime. We also found a significant difference in the spectral dependence of the scattering coefficients between the two heights. The analysis of downdrafts and the related rainfall revealed changes in the aerosol populations before and after rain events, with absorption and scattering coefficients decreasing as optically active particles are removed by wet deposition. The recovery of absorption and scattering coefficients is faster at 325 m than at 60 m. Convective events were concomitant with rapid increases in the concentrations of sub-50 nm particles, which were likely associated with downdrafts. We found that the aerosol population near the canopy had a significantly higher mass scattering efficiency than at 325 m. There was also a clear spectral dependence, with values for λ=450, 525, and 635 nm of 7.74±0.12, 5.49±0.11, and 4.15±0.11 m2 g−1, respectively, at 60 m, while at 325 m the values were 5.26±0.06, 3.76±0.05, and 2.46±0.04 m2 g−1, respectively. The equivalent aerosol refractive index results, which were obtained for the first time for the wet season in the central Amazon, show slightly higher scattering (real) components at 60 m compared to 325 m of 1.33 and 1.27, respectively. In contrast, the refractive index's absorptive (imaginary) component was identical for both heights, at 0.006. This study shows that the aerosol physical properties at 60 and 325 m are different, likely due to aging processes, and strongly depend on the photochemistry, PBL dynamics, and aerosol sources. These findings provide valuable insights into the impact of aerosols on climate and radiative balance and can be used to improve the representation of aerosols in global climate models.
Sensitivities of Amazonian clouds to aerosols and updraft speed
The effects of aerosol particles and updraft speed on warm-phase cloud microphysical properties are studied in the Amazon region as part of the ACRIDICON-CHUVA experiment. Here we expand the sensitivity analysis usually found in the literature by concomitantly considering cloud evolution, putting the sensitivity quantifications into perspective in relation to in-cloud processing, and by considering the effects on droplet size distribution (DSD) shape. Our in situ aircraft measurements over the Amazon Basin cover a wide range of particle concentration and thermodynamic conditions, from the pristine regions over coastal and forested areas to the southern Amazon, which is highly polluted from biomass burning. The quantitative results show that particle concentration is the primary driver for the vertical profiles of effective diameter and droplet concentration in the warm phase of Amazonian convective clouds, while updraft speeds have a modulating role in the latter and in total condensed water. The cloud microphysical properties were found to be highly variable with altitude above cloud base, which we used as a proxy for cloud evolution since it is a measure of the time droplets that were subject to cloud processing. We show that DSD shape is crucial in understanding cloud sensitivities. The aerosol effect on DSD shape was found to vary with altitude, which can help models to better constrain the indirect aerosol effect on climate.
Illustration of microphysical processes in Amazonian deep convective clouds in the gamma phase space: introduction and potential applications
The behavior of tropical clouds remains a major open scientific question, resulting in poor representation by models. One challenge is to realistically reproduce cloud droplet size distributions (DSDs) and their evolution over time and space. Many applications, not limited to models, use the gamma function to represent DSDs. However, even though the statistical characteristics of the gamma parameters have been widely studied, there is almost no study dedicated to understanding the phase space of this function and the associated physics. This phase space can be defined by the three parameters that define the DSD intercept, shape, and curvature. Gamma phase space may provide a common framework for parameterizations and intercomparisons. Here, we introduce the phase space approach and its characteristics, focusing on warm-phase microphysical cloud properties and the transition to the mixed-phase layer. We show that trajectories in this phase space can represent DSD evolution and can be related to growth processes. Condensational and collisional growth may be interpreted as pseudo-forces that induce displacements in opposite directions within the phase space. The actually observed movements in the phase space are a result of the combination of such pseudo-forces. Additionally, aerosol effects can be evaluated given their significant impact on DSDs. The DSDs associated with liquid droplets that favor cloud glaciation can be delimited in the phase space, which can help models to adequately predict the transition to the mixed phase. We also consider possible ways to constrain the DSD in two-moment bulk microphysics schemes, in which the relative dispersion parameter of the DSD can play a significant role. Overall, the gamma phase space approach can be an invaluable tool for studying cloud microphysical evolution and can be readily applied in many scenarios that rely on gamma DSDs.
Vertical distribution of the particle phase in tropical deep convective clouds as derived from cloud-side reflected solar radiation measurements
Vertical profiles of cloud particle phase in tropical deep convective clouds (DCCs) were investigated using airborne solar spectral radiation data collected by the German High Altitude and Long Range Research Aircraft (HALO) during the ACRIDICON-CHUVA campaign, which was conducted over the Brazilian rainforest in September 2014. A phase discrimination retrieval based on imaging spectroradiometer measurements of DCC side spectral reflectivity was applied to clouds formed in different aerosol conditions. From the retrieval results the height of the mixed-phase layer of the DCCs was determined. The retrieved profiles were compared with in situ measurements and satellite observations. It was found that the depth and vertical position of the mixed-phase layer can vary up to 900 m for one single cloud scene. This variability is attributed to the different stages of cloud development in a scene. Clouds of mature or decaying stage are affected by falling ice particles resulting in lower levels of fully glaciated cloud layers compared to growing clouds. Comparing polluted and moderate aerosol conditions revealed a shift of the lower boundary of the mixed-phase layer from 5.6 ± 0.2 km (269 K; moderate) to 6.2 ± 0.3 km (267 K; polluted), and of the upper boundary from 6.8 ± 0.2 km (263 K; moderate) to 7.4 ± 0.4 km (259 K; polluted), as would be expected from theory.
Isoprene nitrates drive new particle formation in Amazon’s upper troposphere
New particle formation (NPF) in the tropical upper troposphere is a globally important source of atmospheric aerosols 1 , 2 , 3 – 4 . It is known to occur over the Amazon basin, but the nucleation mechanism and chemical precursors have yet to be identified 2 . Here we present comprehensive in situ aircraft measurements showing that extremely low-volatile oxidation products of isoprene, particularly certain organonitrates, drive NPF in the Amazonian upper troposphere. The organonitrates originate from OH-initiated oxidation of isoprene from forest emissions in the presence of nitrogen oxides from lightning. Nucleation bursts start about 2 h after sunrise in the outflow of nocturnal deep convection, producing high aerosol concentrations of more than 50,000 particles cm − 3 . We report measurements of characteristic diurnal cycles of precursor gases and particles. Our observations show that the interplay between biogenic isoprene, deep tropical convection with associated lightning, oxidation photochemistry and the low ambient temperature uniquely promotes NPF. The particles grow over time, undergo long-range transport and descend through subsidence to the lower troposphere, in which they can serve as cloud condensation nuclei (CCN) that influence the Earth’s hydrological cycle, radiation budget and climate 1 , 4 , 5 , 6 , 7 – 8 . Aircraft measurements over the Amazon show that new particle formation in the upper troposphere emerges when isoprene, emitted by forests, undergoes oxidation in the presence of nitrogen oxides produced by lightning.