Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
17 result(s) for "Cecon, Erika"
Sort by:
Computational Design and Evaluation of Peptides to Target SARS-CoV-2 Spike–ACE2 Interaction
The receptor-binding domain (RBD) of SARS-CoV-2 spike protein is responsible for the recognition of the Angiotensin-Converting Enzyme 2 (ACE2) receptor in human cells and, thus, plays a critical role in viral infection. The therapeutic value of targeting this interaction has been proven by a sizable body of research investigating antibodies, small proteins, aptamers, and peptides. This study presents a novel peptide that impinges the interaction between RBD and ACE2. Starting from a very large pool of structurally designed peptides extracted from our database, PepI-Covid19, a diverse set of peptides were studied using molecular dynamics simulations. Ten of the most promising were chemically synthesized and validated both in vitro and in a cell-based assay. Our results indicate that one of the peptides (PEP10) exhibited the highest disruption of the RBD/ACE2 complex, effectively blocking the binding of two molecules and consequently inhibiting the SARS-CoV-2 spike-mediated cell entry of viruses pseudotyped with the spike of the D614G, Delta, and Omicron variants. PEP10 can potentially serve as a scaffold that can be further optimized for improved affinity and efficacy.
NF-κB Drives the Synthesis of Melatonin in RAW 264.7 Macrophages by Inducing the Transcription of the Arylalkylamine-N-Acetyltransferase (AA-NAT) Gene
We demonstrate that during inflammatory responses the nuclear factor kappa B (NF-κB) induces the synthesis of melatonin by macrophages and that macrophage-synthesized melatonin modulates the function of these professional phagocytes in an autocrine manner. Expression of a DsRed2 fluorescent reporter driven by regions of the aa-nat promoter, that encodes the key enzyme involved in melatonin synthesis (arylalkylamine-N-acetyltransferase), containing one or two upstream κB binding sites in RAW 264.7 macrophage cell lines was repressed when NF-κB activity was inhibited by blocking its nuclear translocation or its DNA binding activity or by silencing the transcription of the RelA or c-Rel NF-κB subunits. Therefore, transcription of aa-nat driven by NF-κB dimers containing RelA or c-Rel subunits mediates pathogen-associated molecular patterns (PAMPs) or pro-inflammatory cytokine-induced melatonin synthesis in macrophages. Furthermore, melatonin acts in an autocrine manner to potentiate macrophage phagocytic activity, whereas luzindole, a competitive antagonist of melatonin receptors, decreases macrophage phagocytic activity. The opposing functions of NF-κB in the modulation of AA-NAT expression in pinealocytes and macrophages may represent the key mechanism for the switch in the source of melatonin from the pineal gland to immune-competent cells during the development of an inflammatory response.
Enabling STD-NMR fragment screening using stabilized native GPCR: A case study of adenosine receptor
Structural studies of integral membrane proteins have been limited by the intrinsic conformational flexibility and the need to stabilize the proteins in solution. Stabilization by mutagenesis was very successful for structural biology of G protein-coupled receptors (GPCRs). However, it requires heavy protein engineering and may introduce structural deviations. Here we describe the use of specific calixarenes-based detergents for native GPCR stabilization. Wild type, full length human adenosine A 2A receptor was used to exemplify the approach. We could stabilize native, glycosylated, non-aggregated and homogenous A 2A R that maintained its ligand binding capacity. The benefit of the preparation for fragment screening, using the Saturation-Transfer Difference nuclear magnetic resonance (STD-NMR) experiment is reported. The binding of the agonist adenosine and the antagonist caffeine were observed and competition experiments with CGS-21680 and ZM241385 were performed, demonstrating the feasibility of the STD-based fragment screening on the native A 2A receptor. Interestingly, adenosine was shown to bind a second binding site in the presence of the agonist CGS-21680 which corroborates published results obtained with molecular dynamics simulation. Fragment-like compounds identified using STD-NMR showed antagonistic effects on A 2A R in the cAMP cellular assay. Taken together, our study shows that stabilization of native GPCRs represents an attractive approach for STD-based fragment screening and drug design.
A seeding-based neuronal model of tau aggregation for use in drug discovery
Intracellular accumulation of tau protein is a hallmark of Alzheimer’s Disease and Progressive Supranuclear Palsy, as well as other neurodegenerative disorders collectively known as tauopathies. Despite our increasing understanding of the mechanisms leading to the initiation and progression of tau pathology, the field still lacks appropriate disease models to facilitate drug discovery. Here, we established a novel and modulatable seeding-based neuronal model of full-length 4R tau accumulation using humanized mouse cortical neurons and seeds from P301S human tau transgenic animals. The model shows specific and consistent formation of intraneuronal insoluble full-length 4R tau inclusions, which are positive for known markers of tau pathology (AT8, PHF-1, MC-1), and creates seeding competent tau. The formation of new inclusions can be prevented by treatment with tau siRNA, providing a robust internal control for use in qualifying the assessment of potential therapeutic candidates aimed at reducing the intracellular pool of tau. In addition, the experimental set up and data analysis techniques used provide consistent results in larger-scale designs that required multiple rounds of independent experiments, making this is a versatile and valuable cellular model for fundamental and early pre-clinical research of tau-targeted therapies.
Novel repertoire of tau biosensors to monitor pathological tau transformation and seeding activity in living cells
Aggregates of the tau protein are a well-known hallmark of several neurodegenerative diseases, collectively referred to as tauopathies, including frontal temporal dementia and Alzheimer’s disease (AD). Monitoring the transformation process of tau from physiological monomers into pathological oligomers or aggregates in a high-throughput, quantitative manner and in a cellular context is still a major challenge in the field. Identifying molecules able to interfere with those processes is of high therapeutic interest. Here, we developed a series of inter- and intramolecular tau biosensors based on the highly sensitive Nanoluciferase (Nluc) binary technology (NanoBiT) able to monitor the pathological conformational change and self-interaction of tau in living cells. Our repertoire of tau biosensors reliably reports i. molecular proximity of physiological full-length tau at microtubules; ii. changes in tau conformation and self-interaction associated with tau phosphorylation, as well as iii. tau interaction induced by seeds of recombinant tau or from mouse brain lysates of a mouse model of tau pathology. By comparing biosensors comprising different tau forms ( i.e . full-length or short fragments, wild-type, or the disease-associated tau(P301L) variant) further insights into the tau transformation process are obtained. Proof-of-concept data for the high-throughput suitability and identification of molecules interfering with the pathological tau transformation processes are presented. This novel repertoire of tau biosensors is aimed to boost the disclosure of molecular mechanisms underlying pathological tau transformation in living cells and to discover new drug candidates for tau-related neurodegenerative diseases.
Tau seeding activity in the cerebrospinal fluid of Alzheimer disease patients predicts short-term cognitive decline
Background Alzheimer disease (AD) clinical progression is highly heterogeneous, making its prediction essential for the development of effective therapies. The advancement of cognitive decline in AD is tightly linked to the spread of pathological tau protein aggregates in the brain, through tau seeding properties. Methods We developed a cellular biosensor to measure tau seeding activity from cerebrospinal fluid (CSF) and human brain lysates. Longitudinal analysis of cognitive function was correlated with biosensor response. Results Individuals with CSF exhibiting high or intermediate seeding activity experienced more rapid cognitive decline compared to those with low seeding. High tau seeding was associated with total and phosphorylated tau biomarkers in AD. The biosensor also predicts the potential of human AD brain lysates to induce tau aggregation upon experimental transmission in animal models. Conclusions These results suggest that seeding activity might be a relevant biomarker to forecast AD pathogenicity and clinical progression.
Simufilam Reverses Aberrant Receptor Interactions of Filamin A in Alzheimer’s Disease
Simufilam is a novel oral drug candidate in Phase 3 clinical trials for Alzheimer’s disease (AD) dementia. This small molecule binds an altered form of filamin A (FLNA) that occurs in AD. This drug action disrupts FLNA’s aberrant linkage to the α7 nicotinic acetylcholine receptor (α7nAChR), thereby blocking soluble amyloid beta1–42 (Aβ42)’s signaling via α7nAChR that hyperphosphorylates tau. Here, we aimed to clarify simufilam’s mechanism. We now show that simufilam reduced Aβ42 binding to α7nAChR with a 10-picomolar IC50 using time-resolved fluorescence resonance energy transfer (TR-FRET), a robust technology to detect highly sensitive molecular interactions. We also show that FLNA links to multiple inflammatory receptors in addition to Toll-like receptor 4 (TLR4) in postmortem human AD brains and in AD transgenic mice: TLR2, C-X-C chemokine receptor type 4 (CXCR4), C-C chemokine receptor type 5 (CCR5), and T-cell co-receptor cluster of differentiation 4 (CD4). These aberrant FLNA linkages, which can be induced in a healthy control brain by Aβ42 incubation, were disrupted by simufilam. Simufilam reduced inflammatory cytokine release from Aβ42-stimulated human astrocytes. In the AD transgenic mice, CCR5–G protein coupling was elevated, indicating persistent activation. Oral simufilam reduced both the FLNA–CCR5 linkage and the CCR5–G protein coupling in these mice, while restoring CCR5′s responsivity to C-C chemokine ligand 3 (CCL3). By disrupting aberrant FLNA–receptor interactions critical to AD pathogenic pathways, simufilam may promote brain health.
Dual role of mitochondria in producing melatonin and driving GPCR signaling to block cytochrome c release
G protein-coupled receptors (GPCRs) are classically characterized as cell-surface receptors transmitting extracellular signals into cells. Here we show that central components of a GPCR signaling system comprised of the melatonin type 1 receptor (MT₁), its associated G protein, and β-arrestins are on and within neuronal mitochondria. We discovered that the ligand melatonin is exclusively synthesized in the mitochondrial matrix and released by the organelle activating the mitochondrial MT₁ signal-transduction pathway inhibiting stress-mediated cytochrome c release and caspase activation. These findings coupled with our observation that mitochondrial MT₁ overexpression reduces ischemic brain injury in mice delineate a mitochondrial GPCR mechanism contributing to the neuroprotective action of melatonin. We propose a new term, “automitocrine,” analogous to “autocrine” when a similar phenomenon occurs at the cellular level, to describe this unexpected intracellular organelle ligand–receptor pathway that opens a new research avenue investigating mitochondrial GPCR biology.
Immune-Pineal Axis: Nuclear Factor κB (NF-kB) Mediates the Shift in the Melatonin Source from Pinealocytes to Immune Competent Cells
Pineal gland melatonin is the darkness hormone, while extra-pineal melatonin produced by the gonads, gut, retina, and immune competent cells acts as a paracrine or autocrine mediator. The well-known immunomodulatory effect of melatonin is observed either as an endocrine, a paracrine or an autocrine response. In mammals, nuclear translocation of nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) blocks noradrenaline-induced melatonin synthesis in pinealocytes, which induces melatonin synthesis in macrophages. In addition, melatonin reduces NF-κB activation in pinealocytes and immune competent cells. Therefore, pathogen- or danger-associated molecular patterns transiently switch the synthesis of melatonin from pinealocytes to immune competent cells, and as the response progresses melatonin inhibition of NF-κB activity leads these cells to a more quiescent state. The opposite effect of NF-κB in pinealocytes and immune competent cells is due to different NF-κB dimers recruited in each phase of the defense response. This coordinated shift of the source of melatonin driven by NF-κB is called the immune-pineal axis. Finally, we discuss how this concept might be relevant to a better understanding of pathological conditions with impaired melatonin rhythms and hope it opens new horizons for the research of side effects of melatonin-based therapies.
β-Adrenoceptors Trigger Melatonin Synthesis in Phagocytes
Melatonin (5-methoxy-N-acetylserotonin), the pineal hormone, is also synthesized by immune-competent cells. The pineal hormone signals darkness, while melatonin synthesized on demand by activated macrophages at any hour of the day acts locally, favoring regulatory/tolerant phenotypes. Activation of β-adrenoceptors in pinealocytes is the main route for triggering melatonin synthesis. However, despite the well-known role of β-adrenoceptors in the resolution macrophage phenotype (M2), and the relevance of macrophage synthesized melatonin in facilitating phagocytic activity, there is no information regarding whether activation of β-adrenoceptors would induce melatonin synthesis by monocytes. Here we show that catecholamines stimulate melatonin synthesis in bone marrow-derived dendritic cells and RAW 264.7 macrophages. Activation of β-adrenoceptors promotes the synthesis of melatonin by stimulating cyclic AMP/protein kinase A (PKA) pathway and by activating the nuclear translocation of NF-κB. Considering the great number of macrophages around sympathetic nerve terminals, and the relevance of this system for maintaining macrophages in stages compatible to low-grade inflammation, our data open the possibility that extra-pineal melatonin acts as an autocrine/paracrine signal in macrophages under resolution or tolerant phenotypes.