Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
6 result(s) for "Cendrowska, Urszula"
Sort by:
Seeding the aggregation of TDP-43 requires post-fibrillization proteolytic cleavage
Despite the strong evidence linking the transactive response DNA-binding protein 43 (TDP-43) aggregation to the pathogenesis of frontotemporal lobar degeneration with TDP-43, amyotrophic lateral sclerosis and several neurodegenerative diseases, our knowledge of the sequence and structural determinants of its aggregation and neurotoxicity remains incomplete. Herein, we present a new method for producing recombinant full-length TDP-43 filaments that exhibit sequence and morphological features similar to those of brain-derived TDP-43 filaments. We show that TDP-43 filaments contain a β-sheet-rich helical amyloid core that is fully buried by the flanking structured domains of the protein. We demonstrate that the proteolytic cleavage of TDP-43 filaments and exposure of this amyloid core are necessary for propagating TDP-43 pathology and enhancing the seeding of brain-derived TDP-43 aggregates. Only TDP-43 filaments with exposed amyloid core efficiently seeded the aggregation of endogenous TDP-43 in cells. These findings suggest that inhibiting the enzymes mediating cleavage of TDP-43 aggregates represents a viable disease-modifying strategy to slow the progression of amyotrophic lateral sclerosis and other TDP-43 proteinopathies. Reconstitution of TDP-43 filaments that exhibit sequence and morphological features similar to those found in the brain helps to uncover a new mechanism for the formation and propagation of pathology in amyotrophic lateral sclerosis and other neurodegenerative diseases.
Unraveling the complexity of amyloid polymorphism using gold nanoparticles and cryo-EM
Increasing evidence suggests that amyloid polymorphism gives rise to different strains of amyloids with distinct toxicities and pathologyspreading properties. Validating this hypothesis is challenging due to a lack of tools and methods that allow for the direct characterization of amyloid polymorphism in hydrated and complex biological samples. Here, we report on the development of 11- mercapto-1-undecanesulfonate-coated gold nanoparticles (NPs) that efficiently label the edges of synthetic, recombinant, and native amyloid fibrils derived from different amyloidogenic proteins. We demonstrate that these NPs represent powerful tools for assessing amyloid morphological polymorphism, using cryogenic transmission electron microscopy (cryo-EM). The NPs allowed for the visualization of morphological features that are not directly observed using standard imaging techniques, including transmission electron microscopy with use of the negative stain or cryo-EM imaging. The use of these NPs to label native paired helical filaments (PHFs) from the postmortem brain of a patient with Alzheimer’s disease, as well as amyloid fibrils extracted from the heart tissue of a patient suffering from systemic amyloid light-chain amyloidosis, revealed a high degree of homogeneity across the fibrils derived from human tissue in comparison with fibrils aggregated in vitro. These findings are consistent with, and strongly support, the emerging view that the physiologic milieu is a key determinant of amyloid fibril strains. Together, these advances should not only facilitate the profiling and characterization of amyloids for structural studies by cryo-EM, but also pave the way to elucidate the structural basis of amyloid strains and toxicity, and possibly the correlation between the pathological and clinical heterogeneity of amyloid diseases.
New approach for time-resolved and dynamic investigations on nanoparticles agglomeration
Nanoparticle (NP) colloidal stability plays a crucial role in biomedical application not only for human and environmental safety but also for NP efficiency and functionality. NP agglomeration is considered as a possible process in monodispersed NP colloidal solutions, which drastically affects colloidal stability. This process is triggered by changes in the physicochemical properties of the surrounding media, such as ionic strength (IS), pH value, or presence of biomolecules. Despite different available characterization methods for nanoparticles (NPs), there is a lack of information about the underlying mechanisms at the early stage of dynamic behaviors, namely changing in NP size distribution and structure while placing them from a stable colloidal solution to a new media like biological fluids. In this study, an advanced in situ approach is presented that combines small angle X-ray scattering (SAXS) and microfluidics, allowing label-free, direct, time-resolved, and dynamic observations of the early stage of NP interaction/agglomeration initiated by environmental changes. It is shown for silica NPs that the presence of protein in the media enormously accelerates the NP agglomeration process compared to respective changes in IS and pH. High IS results in a staring agglomeration process after 40 min, though, in case of protein presence in media, this time decreased enormously to 48 s. These time scales show that this method is sensitive and precise in depicting the dynamics of fast and slow NP interactions in colloidal conditions and therefore supports understanding the colloidal stability of NPs in various media concluding in safe and efficient NP designing for various applications.
The Nt17 domain and its helical conformation regulate the aggregation, cellular properties and neurotoxicity of mutant huntingtin exon 1
Converging evidence points to the N-terminal domain comprising the first 17 amino acids of the Huntingtin protein (Nt17) as a key regulator of its aggregation, cellular properties and toxicity. In this study, we further investigated the interplay between Nt17 and the polyQ domain repeat length in regulating the aggregation and inclusion formation of exon 1 of the Huntingtin protein (Httex1). In addition, we investigated the effect of removing Nt17 or modulating its local structure on the membrane interactions, neuronal uptake, and toxicity of monomeric or fibrillar Httex1. Our results show that the polyQ and Nt17 domains synergistically modulate the aggregation propensity of Httex1 and that the Nt17 domain plays an important role in shaping the surface properties of mutant Httex1 fibrils and regulating their poly-Q-dependent growth, lateral association and neuronal uptake. Removal of Nt17 or disruption of its transient helical conformations slowed the aggregation of monomeric Httex1 in vitro, reduced inclusion formation in cells, enhanced the neuronal uptake and nuclear accumulation of monomeric Httex1 proteins, and was sufficient to prevent cell death induced by Httex1 72Q overexpression. Finally, we demonstrate that the uptake of Httex1 fibrils into primary neurons and the resulting toxicity are strongly influenced by mutations and phosphorylation events that influence the local helical propensity of Nt17. Altogether, our results demonstrate that the Nt17 domain serves as one of the key master regulators of Htt aggregation, internalization, and toxicity and represents an attractive target for inhibiting Htt aggregate formation, inclusion formation, and neuronal toxicity. Competing Interest Statement Hilal Lashuel (HAL) has received funding from industry to support research on neurodegenerative diseases, including from Merck Serono, UCB, and Abbvie. These companies had no specific role in the conceptualization, preparation, and decision to publish this work. HAL is also the co-founder and Chief Scientific Officer of ND BioSciences SA, a company that develops diagnostics and treatments for neurodegenerative diseases based on platforms that reproduce the complexity and diversity of proteins implicated in neurodegenerative diseases and their pathologies.
Unraveling the Complexity of Amyloid Polymorphism Using Gold Nanoparticles and Cryo-EM
The misfolding and self-assembly of proteins into β-sheet-rich amyloid fibrils of various structures and morphologies is a hallmark of several neurodegenerative and systemic diseases. Increasing evidence suggests that amyloid polymorphism gives rise to different strains of amyloids with distinct toxicity and pathology-spreading properties. Validating this hypothesis is challenging due to a lack of tools and methods that allow for the direct characterization of amyloid polymorphism in hydrated and complex biological samples. Here, we report on the use of 11-mercapto-1-undecanesulfonate-coated gold nanoparticles (NPs) to label the edges of synthetic, recombinant and native amyloid fibrils to assess amyloid morphological polymorphism using cryogenic transmission electron microscopy (cryo TEM). The fibrils studied were derived from amyloid proteins involved in disorders of the central nervous system (amyloid-β, tau, α-synuclein) and in systemic amyloidosis (a fragment of an immunoglobulin light chain). The labeling efficiency enabled imaging and characterization of amyloid fibrils of different morphologies under hydrated conditions using cryo TEM. These NPs allowed for the visualization of morphological features that are not directly observed using standard imaging techniques, including TEM with use of the negative stain or cryo TEM imaging. We also demonstrate the use of these NPs to label native paired helical filaments (PHFs) from the postmortem brain of an Alzheimer's disease patient, as well as amyloid fibrils extracted from the heart tissue of a patient suffering from systemic amyloid light-chain (AL) amyloidosis. Analysis of the cryo TEM images of amyloids decorated with NPs shows exceptional homogeneity across the fibrils derived from human tissue in comparison to fibrils aggregated in vitro. The use of these NPs enabled us to gain novel insight into the structural features that distinguish amyloid fibrils formed in vivo from those formed in cell-free in vitro systems. Our findings demonstrate that these NPs represent a potent tool for rapid imaging and profiling of amyloid morphological polymorphism in different types of samples, including those derived from complex biological aggregates found in human tissue and animal models of amyloid diseases. This study should not only facilitate the profiling and characterization of amyloids for structural studies by cryo TEM but also pave the way to elucidate the structural basis of amyloid strains and toxicity and possibly the correlation between the pathological and clinical heterogeneity of amyloid diseases.
N-terminal phosphorylation of Huntingtin: A molecular switch for regulating Htt aggregation, helical conformation, internalization and nuclear targeting
Phosphorylation of exon1 of the Huntingtin protein (Httex1) has been shown to play important roles in regulating the structure, toxicity and cellular properties of N-terminal fragments and the full-length Huntingtin protein. Here, we investigated and compared the effect of bona fide phosphorylation at S13 and/or S16 on the structure, aggregation, membrane binding, and subcellular properties of mutant Httex1-Q18A. We show that serine phosphorylation at either S13 or S16 strongly disrupts the amphipathic -helix of the N-terminus, inhibits the aggregation of mutant Httex1 and prompts the internalization and nuclear targeting of Httex1 preformed aggregates. In synthetic peptides phosphorylation at S13 and/or S16 strongly disrupted the amphipathic -helix of the N-terminal 17 residues (Nt17) of Httex1 and Nt17 membrane binding. Our studies on peptides bearing a different combination of phosphorylation sites within Nt17 revealed a novel phosphorylation-dependent switch for regulating the structure of Httex1 involving crosstalk between phosphorylation at T3 and S13 or S16. Together, our results provide novel insights into the role of phosphorylation in regulating Httex1 structure and function in health and disease and underscore the critical importance of identifying enzymes responsible for regulating Htt phosphorylation and their potential as therapeutic targets for the treatment of Huntington's disease.